Molecular Quantum Heat Engines

The project aims to build a molecular heat engine at the atomic scale to test quantum efficiency predictions, potentially revolutionizing thermoelectric applications and enhancing energy performance.

Subsidie
€ 1.771.875
2022

Projectdetails

Introduction

Heat engines are an integral part of our daily lives. They power cars or produce electricity by converting heat into work. Increasing their efficiency is very difficult, and only marginal improvements have been achieved over the last decades. Thus, to reach the ambitious climate goals, it is necessary to go beyond conventional technologies. Atom-sized systems where quantum mechanical effects come into play could enable this: theory predicts that their efficiency can be boosted beyond the classical limits imposed by thermodynamics. However, so far, this has not been tested in practice due to a lack of suitable model systems.

Project Proposal

I propose to build a molecular heat engine of only a few atoms in size, with such high control over its structure and properties that these predictions can finally be tested. The engine's quantum properties will be robust at experimentally accessible temperatures, its coupling to the environment will be controllable, and electrical transport through it will be quantum coherent.

Methodology

I seek to exploit the full gamut of their physical properties to boost efficiency, including spin entropy and vibrational coupling. Practically, I will:

  1. Implement a scanning probe setup into a dilution refrigerator.
  2. Fabricate single-molecule junctions with micro-heaters and ultra-sensitive superconducting thermometers.
  3. Perform and interpret caloric experiments on single molecules at unprecedented precision.

Expected Outcomes

The results will teach us about the fundamental properties of atom-scale quantum systems and heat flowing through single molecules. It will inspire new ways to increase the performance of thermoelectric applications such as:

  • Waste heat harvesters
  • Nanoscale spot-cooling devices
  • Thermal rectifiers and transistors

Background

I am one of the forerunners in molecular thermoelectrics, with extensive hands-on experience in material sciences, nanotechnology, and mesoscopic physics. This multidisciplinary background is needed to make this ambitious project a success.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 1.771.875
Totale projectbegroting€ 1.771.875

Tijdlijn

Startdatum1-5-2022
Einddatum30-4-2027
Subsidiejaar2022

Partners & Locaties

Projectpartners

  • UNIVERSITE CATHOLIQUE DE LOUVAINpenvoerder

Land(en)

Belgium

Vergelijkbare projecten binnen European Research Council

ERC STG

MANUNKIND: Determinants and Dynamics of Collaborative Exploitation

This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.

€ 1.497.749
ERC STG

Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure

The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.

€ 1.498.280
ERC STG

Uncovering the mechanisms of action of an antiviral bacterium

This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.

€ 1.500.000
ERC STG

The Ethics of Loneliness and Sociability

This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.

€ 1.025.860

Vergelijkbare projecten uit andere regelingen

ERC COG

Control and complexity in quantum statistical mechanics

This project aims to develop a quantum thermodynamics theory integrating control and measurement effects, while proposing experiments to validate the theoretical framework with existing technologies.

€ 1.865.833
ERC ADG

New superconducting quantum-electric device concept utilizing increased anharmonicity, simple structure, and insensitivity to charge and flux noise

ConceptQ aims to develop a novel superconducting qubit with high fidelity and power efficiency, enhancing quantum computing and enabling breakthroughs in various scientific applications.

€ 2.498.759
ERC COG

Engineering QUAntum materials for TErahertz applications

This project aims to leverage the ultrafast thermodynamic properties of quantum materials to develop advanced THz technologies, enhancing performance and capabilities in the terahertz regime.

€ 1.999.233