Control and complexity in quantum statistical mechanics

This project aims to develop a quantum thermodynamics theory integrating control and measurement effects, while proposing experiments to validate the theoretical framework with existing technologies.

Subsidie
€ 1.865.833
2022

Projectdetails

Introduction

Developing a comprehensive theory of thermodynamics at the quantum scale requires a fundamental change of perspective with regards to its classical counterpart. On the one hand, measuring a quantum system will induce a non-negligible back-action and an energy cost that is at least comparable to the energy scale of the system.

On the other hand, controlling microscopic degrees of freedom and harnessing quantum effects provides novel opportunities with no classical counterpart. In light of these facts, control over different quantum features and quantum measurements themselves become valuable resources that need to be integrated into any self-contained theory of quantum thermodynamics.

Project Goals

In this project, we aim to address this grand challenge.

  1. Formal Theory Development
    First, we will develop a formal theory that includes control over quantum systems with fixed complexity to incorporate these concepts into thermodynamic considerations at the quantum scale.

  2. Thermodynamic Limitations
    Second, we will unveil the fundamental thermodynamic limitations on information acquisition by constructing a thermodynamically self-contained description of the quantum measurement process.

  3. Experimental Proposals
    Finally, we will carefully study current quantum technologies and, with the help of our own lab and experimental colleagues, we will devise experimental proposals and perform proof-of-principle experiments based on existing quantum technologies, to make sure that the theoretical considerations describe relevant features.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 1.865.833
Totale projectbegroting€ 1.865.833

Tijdlijn

Startdatum1-6-2022
Einddatum31-5-2027
Subsidiejaar2022

Partners & Locaties

Projectpartners

  • TECHNISCHE UNIVERSITAET WIENpenvoerder

Land(en)

Austria

Vergelijkbare projecten binnen European Research Council

ERC STG

MANUNKIND: Determinants and Dynamics of Collaborative Exploitation

This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.

€ 1.497.749
ERC STG

Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure

The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.

€ 1.498.280
ERC STG

Uncovering the mechanisms of action of an antiviral bacterium

This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.

€ 1.500.000
ERC STG

The Ethics of Loneliness and Sociability

This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.

€ 1.025.860

Vergelijkbare projecten uit andere regelingen

ERC STG

Experimental Search for Quantum Advantages in Thermodynamics

This project aims to experimentally explore quantum advantages in thermodynamics using a novel circuit quantum electrodynamics setup to develop and test advanced quantum refrigerators.

€ 2.124.089
ERC STG

Hydrodynamics and entropy production in low-dimensional quantum systems

This project aims to enhance understanding of non-equilibrium dynamics in many-body quantum systems by developing new theoretical tools and frameworks to relate quantum and classical phenomena.

€ 1.497.850
ERC STG

Molecular Quantum Heat Engines

The project aims to build a molecular heat engine at the atomic scale to test quantum efficiency predictions, potentially revolutionizing thermoelectric applications and enhancing energy performance.

€ 1.771.875
ERC ADG

Delineating the boundary between the computational power of quantum and classical devices

This project aims to assess and leverage the computational power of quantum devices, identifying their advantages over classical supercomputers through interdisciplinary methods in quantum information and machine learning.

€ 1.807.721