Machine-Assisted Teaching for Open-Ended Problem Solving: Foundations and Applications

The TOPS project aims to develop AI-driven machine-assisted teaching algorithms to support individualized learning in open-ended problem-solving domains.

Subsidie
€ 1.495.000
2022

Projectdetails

Introduction

Computational thinking and problem-solving skills are essential for everyone in the 21st century, both for students to excel in STEM+Computing fields and for adults to thrive in the digital economy. Consequently, educators are putting increasing emphasis on pedagogical tasks in open-ended domains such as programming, conceptual puzzles, and virtual reality environments.

Challenges in Open-Ended Learning

When learning to solve such open-ended tasks by themselves, people often struggle. The difficulties are embodied in the very nature of tasks being open-ended:

  1. Underspecified: Multiple solutions of variable quality.
  2. Conceptual: No well-defined procedure.
  3. Sequential: A series of interdependent steps needed.
  4. Exploratory: Multiple pathways to reach a solution.

These struggling learners can benefit from individualized assistance, for instance, by receiving personalized curriculum across tasks or feedback within a task.

Limitations of Current Resources

Unfortunately, human tutoring resources are scarce, and receiving individualized human assistance is rather a privilege. Technology empowered by artificial intelligence has the potential to tackle this scarcity challenge by providing scalable and automated machine-assisted teaching.

State-of-the-Art Technology

However, the state-of-the-art technology is limited: it is designed for well-defined procedural learning, but not for open-ended conceptual problem solving.

The TOPS Project

The TOPS project will develop next-generation technology for machine-assisted teaching in open-ended domains. We will design novel algorithms for assisting the learner by bridging reinforcement learning, imitation learning, cognitive science, and symbolic reasoning.

Theoretical Foundations

Our theoretical foundations will be based on a computational framework that models the learner as a reinforcement learning agent who gains mastery with the assistance of an automated teacher.

Demonstration of Techniques

In addition to providing solid foundations, we will demonstrate the performance of our techniques in a wide range of pedagogical applications.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 1.495.000
Totale projectbegroting€ 1.495.000

Tijdlijn

Startdatum1-4-2022
Einddatum31-3-2027
Subsidiejaar2022

Partners & Locaties

Projectpartners

  • MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EVpenvoerder

Land(en)

Germany

Vergelijkbare projecten binnen European Research Council

ERC STG

MANUNKIND: Determinants and Dynamics of Collaborative Exploitation

This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.

€ 1.497.749
ERC STG

Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure

The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.

€ 1.498.280
ERC STG

Uncovering the mechanisms of action of an antiviral bacterium

This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.

€ 1.500.000
ERC STG

The Ethics of Loneliness and Sociability

This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.

€ 1.025.860

Vergelijkbare projecten uit andere regelingen

ERC ADG

Artificial User

This project aims to enhance human-computer interaction by developing a simulator that autonomously generates human-like behavior using computational rationality, improving evaluation methods and data generation.

€ 2.499.208
MIT R&D Samenwerking

De Autonomaat

Het project ontwikkelt de Autonomaat, een datagestuurd digitaal onderwijsinstrument dat de persoonlijke ontwikkeling van leerlingen inzichtelijk maakt en leerkrachten ondersteunt in het bieden van maatwerkonderwijs.

€ 197.225
MIT Haalbaarheid

CodeSkillz – Studievoortgang bijhouden met Learning Analytics

CodeSkillz ontwikkelt een prototype voor een dynamisch docentendashboard dat voortgangsmonitoring van leerlingen mogelijk maakt, gericht op formatief leren en co-creatie met docenten.

€ 15.936
MIT R&D Samenwerking

deep Learning to Automatically Suggest Opencourseware

Het project ontwikkelt een deep learning systeem om open online lesmateriaal doorzoekbaar te maken en automatisch aan te bevelen, ter ondersteuning van docenten en leerlingen.

€ 200.000