Investigation of biological seal whiskers to create artificial whisker sensors for underwater robots

This project investigates seal whisker mechanics to understand their prey-tracking abilities and develop biomimetic flow sensors for enhanced underwater robot navigation.

Subsidie
€ 1.469.913
2022

Projectdetails

Introduction

Marine animals employ diverse and fascinating flow sensing phenomena by exploiting the ambient complex fluid mechanics to track prey and escape from predators. Seals are known for their remarkable long-distance prey-hunting capabilities owing to their whiskers, which serve as ultrasensitive flow sensors. For example, a seal is able to detect a fish swimming 180m away by following its vortex streets.

Background

While the unprecedented tracking abilities of seals and the role played by seal whiskers in reducing vortex-induced vibrations have been conclusively demonstrated in the past, the fundamental mechanisms behind such pinpoint tracking remain unclear. The geometrically intricate shape of the seal's whiskers is believed to maximize their signal-to-noise ratio to generate high sensitivity to the tiniest hydrodynamic trails.

Project Objectives

In this project, we propose investigations of the seal whisker behavior, both in live seals and in controlled lab experiments, to shed new light on the fundamental mechanisms that enable the seal to display its excellent prey-tracking behavior.

Key Questions

In particular, we aim to address the following questions:

  1. How does the seal effectively utilize the spatial distribution of the whisker array on its muzzle to conduct multipoint flow measurements?
  2. How does this ability help the seal track and locate its prey?

Research Focus

We propose to study the morphological, mechanical, and material properties of whiskers to explain the exquisite sensing capabilities of seals. Furthermore, we aim to use this understanding to develop biomimetic flow sensors for underwater robot navigation.

Sensor Development

  • Miniaturized and self-powered micro/nano electromechanical systems (MEMS/NEMS) strain and flow sensors will be developed for experimental animal studies.
  • We will also develop artificial 3D printed MEMS whisker sensors and muzzles for experimental fluid-structure interaction studies.

Application

An artificial seal muzzle with mechanosensory MEMS whiskers will be applied on underwater robots to create artificial vision and enable energy-efficient maneuvering through fish-like schooling.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 1.469.913
Totale projectbegroting€ 1.469.913

Tijdlijn

Startdatum1-9-2022
Einddatum31-8-2027
Subsidiejaar2022

Partners & Locaties

Projectpartners

  • RIJKSUNIVERSITEIT GRONINGENpenvoerder

Land(en)

Netherlands

Vergelijkbare projecten binnen European Research Council

ERC Proof of...

Vortex microflow inducer that enables detection of ultra-low concentrations of species in sensors

The VORTEX SENSOR project aims to develop a novel biosensor using acoustic streaming to enhance pathogen detection in aquaculture wastewater, enabling real-time water quality monitoring.

€ 150.000
ERC Starting...

Direct measurements of collective swimming forces at the mesoscale

This project aims to experimentally investigate the swimming forces and interactions of brine shrimps to enhance understanding of mesoscale swarming dynamics and inform future biomimetic applications.

€ 1.500.000
ERC Starting...

Vibrational Micro-robots in Viscoelastic Biological Tissues

The project aims to develop vibrational micro-robots (VIBEBOTS) for efficient propulsion and sensing in viscoelastic biological tissues, enhancing targeted drug delivery and minimally-invasive procedures.

€ 1.499.728
ERC Advanced...

Simulation-enhanced High-density Magnetomyographic Quantum Sensor Systems for Decoding Neuromuscular Control During Motion

This project aims to develop high-density Magnetomyography using quantum sensors to decode neuromuscular control, enabling breakthroughs in diagnostics and treatment of neurodegenerative diseases.

€ 3.499.763
ERC Consolid...

Brain-wide processing and whole-body biophysics of directional sound

This project aims to investigate the acoustic processing mechanisms in the transparent fish Danionella translucida using advanced imaging techniques to enhance understanding of vertebrate hearing evolution.

€ 1.999.256

Vergelijkbare projecten uit andere regelingen

Mkb-innovati...

SealSaver

Het project onderzoekt de ontwikkeling van een kleiner en goedkoper akoestisch afschrikkingsapparaat voor de visserij om zeehonden te ontmoedigen.

€ 20.000
Mkb-innovati...

BenthicBlob

Het project ontwikkelt de "BenthicBlob", een diepzee-monitoringsysteem dat seismische trillingen op de zeebodem registreert voor verbeterde energie-exploratiebeslissingen.

€ 106.750
EIC Pathfinder

Bioinspired Electroactive Aeronautical multiscale LIVE-skin

The BEALIVE project develops a bio-inspired live skin for air-vehicles that enhances aerodynamic performance and reduces noise through advanced electroactive materials and real-time AI optimization.

€ 2.495.445
Mkb-innovati...

Semi-Autonoom Mobiel Monitoring Platform voor offshore Aquacultuur-systemen

Het project onderzoekt de haalbaarheid van een elektrische robot voor het monitoren van zeewier op zee, om kosten te verlagen, veiligheid te vergroten en productie te optimaliseren.

€ 19.362
Mkb-innovati...

MusselAI

Het MusselAI-project ontwikkelt een service met onderwaterrobots en AI om mosselboeren te voorzien van actuele gegevens en aanbevelingen voor duurzame en efficiënte bedrijfsvoering.

€ 197.300