Interactive and Explainable Human-Centered AutoML

ixAutoML aims to enhance trust and interactivity in automated machine learning by integrating human insights and explanations, fostering democratization and efficiency in ML applications.

Subsidie
€ 1.459.763
2022

Projectdetails

Introduction

Trust and interactivity are key factors in the future development and use of automated machine learning (AutoML), supporting developers and researchers in determining powerful task-specific machine learning pipelines, including pre-processing, predictive algorithms, their hyperparameters, and—if applicable—the architecture design of deep neural networks.

Although AutoML is ready for its prime time after it achieved impressive results in several machine learning (ML) applications and its efficiency improved by several orders of magnitudes in recent years, democratization of machine learning via AutoML is still not achieved.

Human-Centered Design

In contrast to previously purely automation-centered approaches, ixAutoML is designed with human users at its heart in several stages. First of all, the foundation of trustful use of AutoML will be based on explanations of its results and processes. Therefore, we aim for:

  1. Explaining static effects of design decisions in ML pipelines optimized by state-of-the-art AutoML systems.
  2. Explaining dynamic AutoML policies for temporal aspects of dynamically adapted hyperparameters while ML models are trained.

Interaction and Efficiency

These explanations will be the base for allowing interactions, bringing the best of two worlds together: human intuition and generalization capabilities for complex systems, and the efficiency of systematic optimization approaches for AutoML. Concretely, we aim for:

  1. Enabling interactions between humans and AutoML by taking human's latent knowledge into account and learning when to interact.
  2. Building first ixAutoML prototypes and showing its efficiency in the context of Industry 4.0.

Conclusion

Perfectly aligned with the EU's AI strategy and recent efforts on interpretability in the ML community, we strongly believe that this timely human-centered ixAutoML will have a substantial impact on the democratization of machine learning.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 1.459.763
Totale projectbegroting€ 1.459.763

Tijdlijn

Startdatum1-12-2022
Einddatum30-11-2027
Subsidiejaar2022

Partners & Locaties

Projectpartners

  • GOTTFRIED WILHELM LEIBNIZ UNIVERSITAET HANNOVERpenvoerder

Land(en)

Germany

Vergelijkbare projecten binnen European Research Council

ERC STG

MANUNKIND: Determinants and Dynamics of Collaborative Exploitation

This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.

€ 1.497.749
ERC STG

Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure

The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.

€ 1.498.280
ERC STG

Uncovering the mechanisms of action of an antiviral bacterium

This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.

€ 1.500.000
ERC STG

The Ethics of Loneliness and Sociability

This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.

€ 1.025.860

Vergelijkbare projecten uit andere regelingen

MIT R&D AI

eXplainable AI in Personalized Mental Healthcare

Dit project ontwikkelt een innovatief AI-platform dat gebruikers betrekt bij het verbeteren van algoritmen via feedbackloops, gericht op transparantie en betrouwbaarheid in de geestelijke gezondheidszorg.

€ 350.000
MIT Haalbaarheid

Haalbaarheidsonderzoek online tool voor toepassing Targeted Maximum Likelihood Estimation (TMLE)

Researchable B.V. ontwikkelt een SaaS-oplossing die TMLE gebruikt om de onzichtbare laag van AI-berekeningen zichtbaar te maken via Explainable AI (XAI) voor betere inzicht in voorspellingen.

€ 20.000
MIT Haalbaarheid

InContract AI

Het project onderzoekt de inzet van digital twins en AI voor het automatiseren van contracten binnen de InContract-tool.

€ 20.000