Hyperpolarized Magnetic Resonance at the point-of-care
HYPMET aims to revolutionize personalized cancer treatment by developing a compact NMR technology for real-time monitoring of metabolic pathways and body fluid analyses using enhanced hyperpolarization methods.
Projectdetails
Introduction
HYPMET proposes a pioneering research methodology for hyperpolarized magnetic resonance for real-time monitoring of upregulated metabolic pathways in cancer cells and in-vivo, as well as for body fluid metabolic analyses with the prospect of revolutionizing the medical approach to personalized treatments.
Background
A common analytical method for structural biology, medical imaging, and chemical analysis is nuclear magnetic resonance (NMR), which is flexible but intrinsically insensitive. Even in the most sensitive NMR spectra, many endogenous compounds found in blood, saliva, or urine are currently unresolved.
Objectives
HYPMET will establish a ground-breaking technology enabling the detection of body fluids metabolites below the current limit of NMR detection (~μM) and the real-time monitoring of clinically relevant metabolic pathways in-cells and in-vivo. The key objectives include:
- Enabling NMR metabolomics analyses at the point-of-care.
- Ensuring full compatibility with personalized medical treatments.
- Creating a compact device (less than 10×10×30 cm) that does not require superconducting magnets.
Methodology
Emerging methods, such as hyperpolarization methods (HM), can boost the NMR signal intensity. HYPMET will merge two HMs to achieve NMR signal enhancements of several thousand-fold continuously, in the liquid state and at ultra-low magnetic field (ULF, i.e., <10 mT) for many nuclear isotopes. The two HMs are:
- Overhauser Dynamic Nuclear Polarization (ODNP)
- Signal Amplification By Reversible Exchange (SABRE)
Expertise
The Principal Investigator's unique expertise spans method development on various HMs and the development and implementation of a protocol for real-time monitoring of pyruvate to lactate conversions in-cells and in-vivo to probe the state of a tumor in real-time.
Future Prospects
Success in this multidisciplinary project will pave the way for efficient NMR metabolomics analyses and for better real-time metabolic conversion monitoring directly at the point-of-care. In the future, the technology could be further reduced in size and become a widespread clinical tool.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.499.968 |
Totale projectbegroting | € 1.499.968 |
Tijdlijn
Startdatum | 1-5-2024 |
Einddatum | 30-4-2029 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- UNIVERSITA DEGLI STUDI DI PADOVApenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Inexhaustible Spring of Hyperpolarization For Magnetic ResonanceHypFlow aims to revolutionize NMR by developing a system for inexhaustible, pure hyperpolarization, enhancing sensitivity 10,000-fold for diverse applications in research and industry. | ERC COG | € 2.990.000 | 2023 | Details |
Valorising magnetometry in cellsThis project aims to commercialize diamond magnetometry for measuring free radical generation in living cells, potentially leading to a startup focused on innovative diagnostic solutions. | ERC POC | € 150.000 | 2022 | Details |
Radiation-detected NMR: new dimension for Magnetic Resonance spectroscopy and imagingThis project aims to develop a modular insert for conventional NMR and MRI spectrometers to enhance sensitivity through in-situ polarisation of longer-lived nuclei using radiation-detected NMR. | ERC POC | € 150.000 | 2023 | Details |
Hyperpolarized NMR made simpleMAGSENSE aims to enhance NMR sensitivity by using standard hydrogen molecules as polarization batteries, enabling ultrasensitive analysis without modifying existing equipment, thus revolutionizing various fields. | EIC Transition | € 2.451.913 | 2023 | Details |
Inexhaustible Spring of Hyperpolarization For Magnetic Resonance
HypFlow aims to revolutionize NMR by developing a system for inexhaustible, pure hyperpolarization, enhancing sensitivity 10,000-fold for diverse applications in research and industry.
Valorising magnetometry in cells
This project aims to commercialize diamond magnetometry for measuring free radical generation in living cells, potentially leading to a startup focused on innovative diagnostic solutions.
Radiation-detected NMR: new dimension for Magnetic Resonance spectroscopy and imaging
This project aims to develop a modular insert for conventional NMR and MRI spectrometers to enhance sensitivity through in-situ polarisation of longer-lived nuclei using radiation-detected NMR.
Hyperpolarized NMR made simple
MAGSENSE aims to enhance NMR sensitivity by using standard hydrogen molecules as polarization batteries, enabling ultrasensitive analysis without modifying existing equipment, thus revolutionizing various fields.