Harnessing mechanisms for plant carbon delivery to symbiotic soil fungi for sustainable food production
This project aims to engineer rice to enhance carbon delivery to arbuscular mycorrhizal fungi, improving nutrient uptake and soil fertility while reducing synthetic fertilizer reliance.
Projectdetails
Introduction
The arbuscular mycorrhizal (AM) symbiosis between plants and symbiotic soil fungi confers key nutritional benefits to plants. AM fungi increase plant productivity by up to 30% by improving mineral nutrient uptake from the soil. In exchange for these nutrients, plants transfer more than one gigaton of photosynthetically fixed carbon each year to the AM fungal network in the soil. This carbon transfer has a major impact not just on plant and fungal physiology, but also on the global carbon cycle.
Previous Work
My previous work identified a molecular pathway in plant roots that is activated during fungal colonization of root cells and transfers fixed carbon to AM fungi in the form of lipids. This finding represents a breakthrough in the field of AM symbiosis as we were able to describe, for the first time, how and in which form carbon is delivered to AM fungi.
Proposed Research
My discovery unlocks an opportunity: I propose to engineer the model crop rice to maximize carbon delivery to the fungal mycelium by exploiting the mechanisms underpinning carbon allocation to AM fungi. This approach could lead to enhanced nutrient uptake by promoting the symbiotic association, thereby reducing the need for synthetic fertilizer. Moreover, it also has the potential to increase carbon sequestration and soil fertility.
Research Gaps
However, it is currently unknown how plant carbon metabolism is altered at a whole plant level to increase carbon flux to the fungal mycelium, and how plants control the amount of carbon allocated to AM fungi.
Methodology
To achieve this ambitious aim, I will exploit the recent technological advances in:
- Genetics
- Carbon tracing
- Single cell transcriptomics
These will be used to:
- Map the carbon allocation pathway from leaves to roots and to AM fungi at single cell resolution (aim 1).
- Identify the genetic and transcriptional regulators of this pathway (aim 2).
- Maximize carbon delivery from crop plants to the fungal mycelium in the soil (aim 3).
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.499.551 |
Totale projectbegroting | € 1.499.551 |
Tijdlijn
Startdatum | 1-2-2025 |
Einddatum | 31-1-2030 |
Subsidiejaar | 2025 |
Partners & Locaties
Projectpartners
- THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGEpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Mixotrophy: an uncharted carbon flux in the plant worldThis project aims to investigate the prevalence and impact of AM mixotrophy in plants, revealing how they obtain carbon from fungi, to enhance our understanding of carbon cycling in ecosystems. | ERC COG | € 1.986.701 | 2022 | Details |
Molecular exchange at the plant-fungal interface in arbuscular mycorrhiza symbiosisSymbioticExchange aims to uncover the molecular mechanisms of nutrient exchange in arbuscular mycorrhiza to enhance crop breeding for improved food security and sustainable agriculture. | ERC COG | € 2.000.000 | 2024 | Details |
Digging Deep: An Underground Plant Trait Perspective on Diversity-Disease RelationshipsThis project aims to enhance understanding of plant diversity's impact on disease risk by integrating animal epidemiology methods to develop resilient agricultural systems against pathogens. | ERC ADG | € 2.500.000 | 2024 | Details |
Mixotrophy: an uncharted carbon flux in the plant world
This project aims to investigate the prevalence and impact of AM mixotrophy in plants, revealing how they obtain carbon from fungi, to enhance our understanding of carbon cycling in ecosystems.
Molecular exchange at the plant-fungal interface in arbuscular mycorrhiza symbiosis
SymbioticExchange aims to uncover the molecular mechanisms of nutrient exchange in arbuscular mycorrhiza to enhance crop breeding for improved food security and sustainable agriculture.
Digging Deep: An Underground Plant Trait Perspective on Diversity-Disease Relationships
This project aims to enhance understanding of plant diversity's impact on disease risk by integrating animal epidemiology methods to develop resilient agricultural systems against pathogens.