Elucidating the networks of immune stromal connections by Perturbation of Immunity in Cancer - towards developing novel therapeutic strategies
This project aims to map immune and stromal cell interactions in the tumor microenvironment to develop targeted therapies that enhance immunotherapy efficacy against cancer.
Projectdetails
Introduction
Immune cells monitor and eliminate cancer cells, and thus keep tumors in check along the lifespan of an organism. However, tumors have evolved various mechanisms to avoid immune surveillance. Therefore, understanding these mechanisms and interfering with them to facilitate immune cell eradication of tumor cells is the focus of many successful immunotherapies.
Limitations of Immunotherapy
The efficacy of immunotherapy is limited to only a small fraction of patients and only certain types of cancers. Therefore, it is crucial to understand the immune-tumor interactions to develop new treatments.
Tumor Evasion Mechanisms
Moreover, tumor evasion mechanisms interfere with such treatments, as compensatory programs ensue soon after therapeutic intervention. These compensatory programs are not limited to tumor cells, but also occur in the stromal compartment of the tumor microenvironment (TME), which provides indispensable support to the tumor and is often overlooked as a potential target for intervention.
Research Objectives
Here we aim to gain a fundamental understanding of all cellular networks within the TME, to elucidate the roles and programs carried out by each cellular element participating in the complex, multilevel interactions that occur before therapeutic intervention and afterward.
Aim 1: Mapping Cellular Interactions
Toward this goal, we will map the entire spectrum of immune and stromal cell interactions in the TME. We will identify:
- Negative- and positive-tumor-regulator dependent programs
- Primary and compensatory programs
- Unique and shared programs across pathogenic conditions
- Cell-intrinsic and extrinsic programs
Aim 2: Identifying Pathways
Additionally, we aim to identify conserved mouse and human pathways using a parallel mouse and human tumor slice culture system.
Aim 3: Testing New Candidates
Based on Aims 1 and 2, we will test and validate new candidates for targeted rational combination therapy in vivo.
Conclusion
Our findings will lay the foundations for a fundamental understanding of tumor immunity dynamics in the TME and create a paradigm shift in immunotherapy.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.500.000 |
Totale projectbegroting | € 1.500.000 |
Tijdlijn
Startdatum | 1-3-2025 |
Einddatum | 28-2-2030 |
Subsidiejaar | 2025 |
Partners & Locaties
Projectpartners
- TECHNION - ISRAEL INSTITUTE OF TECHNOLOGYpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Developing novel single-cell technologies to model and perturb intra-tumor interactions and signaling – an innovation program for the next generation of immunotherapiesThe TROJAN-Cell project aims to engineer immune responses against tumors by understanding immune-suppressive mechanisms in the tumor microenvironment using advanced single-cell technologies. | ERC ADG | € 2.500.000 | 2022 | Details |
Unlocking a T cell-mediated Immune response in therapy-challenged TumorsUnlockIT aims to develop mechanism-based combination therapies for cancer by understanding tumor-immune interactions and enhancing T cell responses in therapy-challenged tumors. | ERC COG | € 2.000.000 | 2024 | Details |
Targeted Re-engineering of the Tumor Matrix to Advance ImmunotherapyThis project aims to disrupt the pro-fibrotic loop in pancreatic cancer using engineered biomimetics to enhance immune therapy efficacy by normalizing the tumor microenvironment. | ERC ADG | € 2.499.783 | 2024 | Details |
Reprogramming of Tumor Stroma to Enhance Cancer ImmunotherapyThis project aims to enhance cancer immunotherapy effectiveness in solid tumors by targeting tumor-activated mesenchymal stromal cells within the immunosuppressive tumor microenvironment. | ERC POC | € 150.000 | 2024 | Details |
Developing novel single-cell technologies to model and perturb intra-tumor interactions and signaling – an innovation program for the next generation of immunotherapies
The TROJAN-Cell project aims to engineer immune responses against tumors by understanding immune-suppressive mechanisms in the tumor microenvironment using advanced single-cell technologies.
Unlocking a T cell-mediated Immune response in therapy-challenged Tumors
UnlockIT aims to develop mechanism-based combination therapies for cancer by understanding tumor-immune interactions and enhancing T cell responses in therapy-challenged tumors.
Targeted Re-engineering of the Tumor Matrix to Advance Immunotherapy
This project aims to disrupt the pro-fibrotic loop in pancreatic cancer using engineered biomimetics to enhance immune therapy efficacy by normalizing the tumor microenvironment.
Reprogramming of Tumor Stroma to Enhance Cancer Immunotherapy
This project aims to enhance cancer immunotherapy effectiveness in solid tumors by targeting tumor-activated mesenchymal stromal cells within the immunosuppressive tumor microenvironment.