Ecological memory of extreme drought events in soil microbial communities
EcoMEMO investigates the role of ecological memory in soil microbial communities' responses to extreme drought, aiming to enhance understanding of their impact on biogeochemical processes under climate change.
Projectdetails
Introduction
Current global changes are increasing the frequency and intensity of extreme drought events, with severe consequences for ecosystems. Recent evidence of ecological memory formation upon recurrent disturbances — defined as the capacity of past events to influence current ecosystem responses — challenges our ability to simulate future ecosystem responses to drought. Yet an important question remains: is ecological memory a fundamental feature regulating how ecosystem functioning responds to extreme climatic events?
Project Aim
EcoMEMO aims at filling this large knowledge gap, with a focus on soil microbial communities, for which I previously showed ecological memory of drought. Soil microbes regulate important biogeochemical processes for carbon and nutrient cycling. They also possess an enormous taxonomic and functional diversity which allows for potential short-term adaptation.
Methodology
By embracing new approaches to study microbial ecology under drought conditions and new experimental facilities targeted to test ecological memory under realistic climate scenarios, I aim to quantify the importance of ecological memory of drought and identify its mechanisms. All this makes EcoMEMO potentially ground-breaking towards our understanding of soil microbial community response to climate change.
Hypotheses
My overarching hypothesis is that ecological memory is a common phenomenon in soil microbial communities, attenuating negative effects of extreme drought on the processes they mediate. I also hypothesize that microbial community transition to alternative stable states during exposure to extreme drought underpins the positive effect on biogeochemical cycling.
Research Goals
Combining soil biogeochemistry, molecular ecology, and mathematics, I will:
- Quantify ecological memory across ecosystems and its consequence for soil processes.
- Assess legacies of previous drought events within soil biotic and abiotic properties.
- Identify features of soil microbial community dynamics underpinning ecological memory formation.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.451.568 |
Totale projectbegroting | € 1.451.568 |
Tijdlijn
Startdatum | 1-12-2024 |
Einddatum | 30-11-2029 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- ALMA MATER STUDIORUM - UNIVERSITA DI BOLOGNApenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Eco-evolutionary dynamics in plant-soil interactions during land use transition: consequences for soil functioning and resilience to droughtThis project investigates how land-use changes in European grasslands affect plant evolution and ecosystem services, aiming to inform sustainable management practices amid climate change pressures. | ERC COG | € 1.999.386 | 2022 | Details |
Ecosystem recovery dynamics and their response to climate change and habitat fragmentationRECODYN aims to enhance ecological restoration understanding by studying biodiversity recovery in multitrophic communities affected by climate change and habitat fragmentation, providing predictive solutions for ecosystem repair. | ERC COG | € 1.999.315 | 2023 | Details |
Resolving mechanisms of microbiome rescue to promote resilience to climate changeThe project aims to develop the Microbiome Rescue framework to reactivate dormant soil microorganisms, enhancing ecosystem resilience and food security in response to climate change. | ERC COG | € 2.272.881 | 2023 | Details |
Molecular Ecology of Medieval European LandscapesMEMELAND aims to create Europe's first species-level ecological history from the Roman era to today, using ancient DNA and biomarkers to inform sustainable land management and conservation efforts. | ERC SyG | € 13.537.645 | 2025 | Details |
Eco-evolutionary dynamics in plant-soil interactions during land use transition: consequences for soil functioning and resilience to drought
This project investigates how land-use changes in European grasslands affect plant evolution and ecosystem services, aiming to inform sustainable management practices amid climate change pressures.
Ecosystem recovery dynamics and their response to climate change and habitat fragmentation
RECODYN aims to enhance ecological restoration understanding by studying biodiversity recovery in multitrophic communities affected by climate change and habitat fragmentation, providing predictive solutions for ecosystem repair.
Resolving mechanisms of microbiome rescue to promote resilience to climate change
The project aims to develop the Microbiome Rescue framework to reactivate dormant soil microorganisms, enhancing ecosystem resilience and food security in response to climate change.
Molecular Ecology of Medieval European Landscapes
MEMELAND aims to create Europe's first species-level ecological history from the Roman era to today, using ancient DNA and biomarkers to inform sustainable land management and conservation efforts.