Resolving mechanisms of microbiome rescue to promote resilience to climate change
The project aims to develop the Microbiome Rescue framework to reactivate dormant soil microorganisms, enhancing ecosystem resilience and food security in response to climate change.
Projectdetails
Introduction
Earth’s climate crisis threatens to disrupt ecosystem services and destabilize food security. Communities of microorganisms, called microbiomes, provide critical functions that feedback on climate and support soil and plant health.
Proposed Framework
I propose a new framework, Microbiome Rescue, to recover microbial populations and lost functions after disturbances. With critical knowledge about the ecology of microbiomes and their contributions to creating resilient systems, I propose that we can achieve a paradigm shift in ecosystem management via directed microbiome interventions.
Focus of the Project
Here, I focus on elaborating rescue strategies that leverage the selective reactivation of dormant microbes. Because microbial dormancy is extensive in soil and the rhizosphere, reactivation offers access to untapped biodiversity and provides immediate solutions for maintaining functions in ecosystems affected by climate change.
Objectives
My first objective is to understand and predict the capacity of dormant soil microorganisms to rescue microbiomes in a changing climate and discover reactivated bacteria that facilitate resilience.
My second objective is to investigate and develop bacterial reactivation for rescue-based microbiome management to support plant resilience to climate change stressors and preserve plant-soil feedback.
Methodology
To achieve these goals, I will execute three multi-factor experiments to reactivate the dormant microbiome from soil and plant systems after exposure to heat and moisture stress:
- First, I will perform a heat and moisture experiment for European soils, assess risk, and curate microbial collections that support functional rescue.
- Next, I will perform two practical rescue experiments for the microbiomes of legumes exposed to heat and moisture stress: customized microbiological amendments and host-microbiome engineering.
Expected Outcomes
This work will provide unprecedented insights into microbiome rescue and identify targets for biological interventions to support soil and crop resilience to climate change.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.272.881 |
Totale projectbegroting | € 2.272.881 |
Tijdlijn
Startdatum | 1-9-2023 |
Einddatum | 31-8-2028 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRSpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Unravelling the molecular evolution of plant-microbiome interactions in drylandsThis project aims to investigate how plant-microbe interactions contribute to drought resistance in Brassicaceae species through eco-evolutionary experiments and genomic analysis. | ERC STG | € 1.499.325 | 2023 | Details |
Coevolutionary Consequences of Biodiversity ChangeThis project investigates how climate change alters plant-microbe interactions and coevolutionary dynamics, revealing impacts on biodiversity and ecosystem functioning over 35 years. | ERC ADG | € 2.500.000 | 2024 | Details |
The Role of Microbial Dormancy as an Ecological and Biogeochemical Regulator on EarthThis project aims to investigate microbial dormancy's role in ecological functioning and biogeochemical cycles in the cryosphere, using data-driven experiments and modeling to enhance our understanding of life’s resilience. | ERC STG | € 2.089.972 | 2024 | Details |
Ecological memory of extreme drought events in soil microbial communitiesEcoMEMO investigates the role of ecological memory in soil microbial communities' responses to extreme drought, aiming to enhance understanding of their impact on biogeochemical processes under climate change. | ERC STG | € 1.451.568 | 2024 | Details |
Unravelling the molecular evolution of plant-microbiome interactions in drylands
This project aims to investigate how plant-microbe interactions contribute to drought resistance in Brassicaceae species through eco-evolutionary experiments and genomic analysis.
Coevolutionary Consequences of Biodiversity Change
This project investigates how climate change alters plant-microbe interactions and coevolutionary dynamics, revealing impacts on biodiversity and ecosystem functioning over 35 years.
The Role of Microbial Dormancy as an Ecological and Biogeochemical Regulator on Earth
This project aims to investigate microbial dormancy's role in ecological functioning and biogeochemical cycles in the cryosphere, using data-driven experiments and modeling to enhance our understanding of life’s resilience.
Ecological memory of extreme drought events in soil microbial communities
EcoMEMO investigates the role of ecological memory in soil microbial communities' responses to extreme drought, aiming to enhance understanding of their impact on biogeochemical processes under climate change.