Cytokine and microbiota function in gut development: spatiotemporal analysis in the zebrafish

This project aims to elucidate how cytokine signaling and microbiota interactions regulate gut development in zebrafish, providing insights for potential therapies for inflammatory bowel disease.

Subsidie
€ 1.500.000
2023

Projectdetails

Introduction

Organ development and function are controlled by complex interactions between genetic, cellular, and environmental factors. Because these interactions are challenging to study in live organisms, their mechanisms remain largely unknown. Gut development is regulated by microbiota colonization, making it a valuable organ for dissecting gene-environment interactions.

Cytokines and Gut Development

Cytokines, small secreted proteins highly responsive to environmental changes, regulate immunity and gut function in mammals. Our data indicate that specific cytokines are also essential for gut development in zebrafish.

Expression Patterns

We found that these cytokines are first expressed in gut epithelial cells during development, and later their expression is switched to immune cells, including innate lymphoid cells (ILCs). ILCs were discovered in the mammalian gut, but their function has not been dissected due to the lack of specific markers.

Research Tools

Having identified the first vertebrate ILC markers in zebrafish, we will combine our novel tools together with other unique benefits of zebrafish such as live microscopy, easy environmental manipulation, and abundant genetic tools, to dissect how microbial cues interact with genetic networks to control organ development.

Hypothesis

We hypothesize that gut development is regulated by cytokine signaling that is, in turn, regulated by crosstalk with the microbiota and the emergence of ILCs.

Specific Aims

Our specific aims are to:

  1. Characterize the roles of cytokines during gut development.
  2. Determine how microbiota-cytokine crosstalk controls gut development.
  3. Uncover the role of ILCs and cytokine source switching in gut maturation.

Significance

This project, at the intersection of developmental biology and immunology, will provide fundamental insights into how symbiont-host crosstalk controls organogenesis, and a new conceptual framework for the function of the immune system. Furthermore, conservation with the human gut could help identify new therapeutic strategies for common diseases such as inflammatory bowel disease.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 1.500.000
Totale projectbegroting€ 1.500.000

Tijdlijn

Startdatum1-1-2023
Einddatum31-12-2027
Subsidiejaar2023

Partners & Locaties

Projectpartners

  • INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALEpenvoerder

Land(en)

France

Vergelijkbare projecten binnen European Research Council

ERC STG

MANUNKIND: Determinants and Dynamics of Collaborative Exploitation

This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.

€ 1.497.749
ERC STG

Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure

The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.

€ 1.498.280
ERC STG

Uncovering the mechanisms of action of an antiviral bacterium

This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.

€ 1.500.000
ERC STG

The Ethics of Loneliness and Sociability

This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.

€ 1.025.860

Vergelijkbare projecten uit andere regelingen

ERC ADG

Innate lymphoid cells and tissue adaptation to changing metabolic needs

This project aims to elucidate the role of ILC3 and the IL-22:IL-22BP module in intestinal adaptation to metabolic changes, with implications for understanding and treating metabolic diseases.

€ 2.379.266
ERC SyG

Functional cartography of intestinal host-microbiome interactions

The project aims to elucidate gut microbiome-host interactions through advanced spatial profiling, predicting disease onset and identifying biomarkers for IBD and CRC.

€ 10.382.670