Functional cartography of intestinal host-microbiome interactions
The project aims to elucidate gut microbiome-host interactions through advanced spatial profiling, predicting disease onset and identifying biomarkers for IBD and CRC.
Projectdetails
Introduction
Microbiome-host crosstalk is crucial for gut homeostasis, and its dysregulation is a hallmark of diseases such as colorectal cancer (CRC) and inflammatory bowel disease (IBD). Despite its key relevance for a holistic understanding of the human superorganism and its (patho-)physiology, how local host-microbiome interactions form specific niches in the gut and how these niches function at the cellular and molecular level remains unexplored, mainly due to a lack of suitable technologies.
Project Proposal
To fill this gap, we propose to jointly reconstruct the host transcriptional and microbiome compositional landscape of the human gut across a large number of healthy individuals as well as IBD and CRC patients.
Methodology
For this, we will leverage a combination of novel spatial profiling technologies for unbiased transcriptome sequencing and microbiome profiling at single-cell resolution in situ.
- Spatial Delineation: First, we will spatially delineate local niches formed of specific microbes and host cells.
- Dissection of Crosstalk: To dissect this complex crosstalk into specific interactions, we will secondly use in vitro and in vivo models to introduce perturbations either on the host or the microbiome side.
- Data Integration: Finally, we will integrate the resulting data to deconvolute host-microbiome circuits computationally and to predict functional niches, in particular host responses to pathogens of relevance in IBD and CRC.
Experimental Validation
Interesting predictions will be tested in organoid and animal models. Developing a spatially resolved computational model of the gut ecosystem will allow us to predict early local events in disease onset; from these, we will identify and validate prognostic IBD and CRC biomarkers for future clinical translation.
Impact
This work will revolutionize our understanding of intestinal host-microbiome interactions by adding a first-ever functionally resolved spatial dimension with clinical relevance for the future diagnosis and treatment of intestinal disorders.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 10.382.670 |
Totale projectbegroting | € 10.382.670 |
Tijdlijn
Startdatum | 1-7-2024 |
Einddatum | 30-6-2030 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- KAROLINSKA INSTITUTETpenvoerder
- KUNGLIGA TEKNISKA HOEGSKOLAN
- EUROPEAN MOLECULAR BIOLOGY LABORATORY
- ACADEMISCH ZIEKENHUIS LEIDEN
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Proteome-wide Functional Interrogation and Modulation of Gut Microbiome SpeciesThis project aims to identify and manipulate gut microbiome protein functions using high-throughput proteomics to develop targeted therapies for restoring microbial health. | ERC STG | € 1.499.980 | 2023 | Details |
Dissection of the host-microbe crosstalk that controls metabolism and physiology in intestinal symbiosisThis project aims to explore the regulatory mechanisms of intestinal bacteria and their symbiotic relationship with hosts using Drosophila to enhance understanding of gut metabolism and health. | ERC STG | € 1.499.600 | 2023 | Details |
Deciphering host-gut microbiota spatio-functional plasticity in inflammationThis project aims to investigate the spatiofunctional plasticity of gut bacteria in Crohn's disease, exploring host-microbe interactions and their impact on inflammation using advanced microbiological and immunological methods. | ERC STG | € 1.997.500 | 2023 | Details |
Systematic Triangulation of Pathobiont-Host-InteractionsThe project aims to identify disease-driving pathobionts linked to genetic risk factors in IBD and CRC using high-throughput technology and machine learning to enhance precision medicine. | ERC STG | € 1.993.688 | 2024 | Details |
Proteome-wide Functional Interrogation and Modulation of Gut Microbiome Species
This project aims to identify and manipulate gut microbiome protein functions using high-throughput proteomics to develop targeted therapies for restoring microbial health.
Dissection of the host-microbe crosstalk that controls metabolism and physiology in intestinal symbiosis
This project aims to explore the regulatory mechanisms of intestinal bacteria and their symbiotic relationship with hosts using Drosophila to enhance understanding of gut metabolism and health.
Deciphering host-gut microbiota spatio-functional plasticity in inflammation
This project aims to investigate the spatiofunctional plasticity of gut bacteria in Crohn's disease, exploring host-microbe interactions and their impact on inflammation using advanced microbiological and immunological methods.
Systematic Triangulation of Pathobiont-Host-Interactions
The project aims to identify disease-driving pathobionts linked to genetic risk factors in IBD and CRC using high-throughput technology and machine learning to enhance precision medicine.