Bioorthogonal Iontronic Chemistry: Spatiotemporal Drug Release with Electronic Precision
Develop a programmable drug delivery system using Biontronic Chemistry for precise spatiotemporal release, enhancing treatment efficacy while minimizing side effects in various therapies.
Projectdetails
Introduction
I envision a new drug delivery system capable of spatiotemporal release with electronic precision. This technology is based on Biontronic Chemistry (BC), which combines Bioorthogonal Release (BR) and Iontronic transport to overcome the drawbacks of each individual technology and combine their unique advantages.
Technology Overview
An electronic ion pump (IP) will enable programmable electrophoretic transport of chemical triggers without liquid flow or moving mechanical parts. This will initiate the ultrafast and selective bioorthogonal release (BR) of drugs at the target site to generate previously unobtainable dynamic concentration-time profiles.
Hence, BC translates electrical stimuli, of arbitrary frequencies and amplitudes, into tailor-made biochemical concentration/time profiles.
Expansion of the Concept
By incorporating surface release functionalities and orthogonal bioorthogonal chemistries, I will further expand the concept and demonstrate choreographed cascade releases. This will afford individually programmable release of multiple compounds with distinct concentration/time profiles.
Methodology
We will map out this large parameter space using a combination of:
- Rational chemical design
- Computationally aided device physics and engineering
- Fluorescent model systems
- Evaluation in cell models
Implications for Science and Therapy
T2S will lay the foundation for new directions in science and offer unprecedented opportunities for various therapies wherein choreographed, spatiotemporal control of multiple drug releases is key (e.g., cancer, nerve regeneration, and aging).
Hypothesis and Goals
My hypothesis is that if we combine local drug delivery and chronotherapy, we can dramatically increase treatment efficacy and reduce (if not completely eliminate) side effects.
My overarching goal is to create a Switch that elevates medicine to the 5th dimension (5D), thus paving the way towards a paradigm shift in drug delivery and our understanding/ability to manipulate biological spacetime by delivering the right dose (1D) at the right place (3D) at the right time (1D).
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.496.795 |
Totale projectbegroting | € 1.496.795 |
Tijdlijn
Startdatum | 1-9-2024 |
Einddatum | 31-8-2029 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- TECHNISCHE UNIVERSITAET WIENpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
On-Demand Bioresorbable OptoElectronic System for In-Vivo and In-Situ Monitoring of Chemotherapeutic DrugsDevelop a bioresorbable chemical sensing system for real-time monitoring of doxorubicin in-vivo, enhancing personalized cancer treatment while eliminating the need for device retrieval surgery. | EIC Pathfinder | € 2.606.250 | 2022 | Details |
Bioorthogonal Implantable Iontronic Switch to Temporally Control the Local Release of ChemotherapeuticsThe project aims to develop an implantable bioSWITCH for on-demand drug delivery to tumors, enhancing treatment efficacy and survival rates in pancreatic cancer. | EIC Pathfinder | € 4.420.511 | 2023 | Details |
In-situ & operando organiC electrochemical transistors monitored by non-destructive spectroscopies for Organic cmos-like NeuromorphIc CircuitsICONIC aims to advance implantable AI organic electronic devices for chronic disease management by investigating PMIECs, leading to smart drug-delivery systems with enhanced accuracy and safety. | EIC Pathfinder | € 2.664.940 | 2024 | Details |
Remote controlling biological systems by sonopharmacology and sonogeneticsThis project aims to develop biocompatible ultrasound technology to control drug, protein, and gene activity, enhancing therapies for cancer, diabetes, and tissue engineering while minimizing side effects. | ERC ADG | € 2.500.000 | 2024 | Details |
On-Demand Bioresorbable OptoElectronic System for In-Vivo and In-Situ Monitoring of Chemotherapeutic Drugs
Develop a bioresorbable chemical sensing system for real-time monitoring of doxorubicin in-vivo, enhancing personalized cancer treatment while eliminating the need for device retrieval surgery.
Bioorthogonal Implantable Iontronic Switch to Temporally Control the Local Release of Chemotherapeutics
The project aims to develop an implantable bioSWITCH for on-demand drug delivery to tumors, enhancing treatment efficacy and survival rates in pancreatic cancer.
In-situ & operando organiC electrochemical transistors monitored by non-destructive spectroscopies for Organic cmos-like NeuromorphIc Circuits
ICONIC aims to advance implantable AI organic electronic devices for chronic disease management by investigating PMIECs, leading to smart drug-delivery systems with enhanced accuracy and safety.
Remote controlling biological systems by sonopharmacology and sonogenetics
This project aims to develop biocompatible ultrasound technology to control drug, protein, and gene activity, enhancing therapies for cancer, diabetes, and tissue engineering while minimizing side effects.