Bioorthogonal Implantable Iontronic Switch to Temporally Control the Local Release of Chemotherapeutics
The project aims to develop an implantable bioSWITCH for on-demand drug delivery to tumors, enhancing treatment efficacy and survival rates in pancreatic cancer.
Projectdetails
Introduction
Our vision for a new type of cancer treatment is based on an implantable therapeutic system capable of programmable on-demand delivery of drugs directly to the tumor.
Technology Overview
We conceive an implantable iontronic switch (bioSWITCH) to enable a spatiotemporally controlled administration of highly potent chemotherapeutics, without the need for systemic administration of (pro)drugs or drug conjugates.
This radically new technology will be realized by a combination of next-level tools. As a result, bioSWITCH can generate previously unobtainable discrete as well as continuous drug concentration profiles at the tumor site. Thus, it allows for the use of highly potent drugs that are otherwise not applicable due to high cytotoxicity.
Project Goals
The goal is to demonstrate the technology's potential to effectively interfere with tumor progression using a xenograft pancreas cancer mouse model. Efficiently shrinking tumors in size allows for surgical resection of previously non-operable tumors and dramatically increases survival rates.
Consortium and Impact
Our consortium of world-leading academics and pioneering SMEs will ensure the translation of this disruptive technology into the market to maximize the socioeconomic impact.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 4.420.511 |
Totale projectbegroting | € 4.420.511 |
Tijdlijn
Startdatum | 1-3-2023 |
Einddatum | 28-2-2026 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- LINKOPINGS UNIVERSITETpenvoerder
- TAGWORKS PHARMACEUTICALS BV
- TECHNISCHE UNIVERSITAET WIEN
- SUPRAPOLIX BV
- MEDIZINISCHE UNIVERSITAT GRAZ
- OBOE IPR AB
- HUN-REN TERMESZETTUDOMANYI KUTATOKOZPONT
Land(en)
Vergelijkbare projecten binnen EIC Pathfinder
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
"Creation of innovative ""humidity to electricity"" renewable energy conversion technology towards sustainable energy challenge"The CATCHER project aims to develop scalable technology for converting atmospheric humidity into renewable electricity, enhancing EU leadership in clean energy innovation. | EIC Pathfinder | € 2.996.550 | 2022 | Details |
Quantitative Ultrasound Stochastic Tomography - Revolutionizing breast cancer diagnosis and screening with supercomputing-based radiation-free imaging.The project aims to revolutionize breast cancer imaging by developing adjoint-based algorithms for uncertainty quantification, enhancing diagnostic confidence through high-resolution, radiation-free images. | EIC Pathfinder | € 2.744.300 | 2022 | Details |
Dynamic Spatio-Temporal Modulation of Light by Phononic ArchitecturesDynamo aims to revolutionize imaging technologies by enabling simultaneous light modulation at GHz rates, enhancing processing speed and positioning Europe as a leader in optical advancements. | EIC Pathfinder | € 2.552.277 | 2022 | Details |
Emerging technologies for crystal-based gamma-ray light sourcesTECHNO-CLS aims to develop novel gamma-ray light sources using oriented crystals and high-energy particle beams, enhancing applications in various scientific fields through innovative technology. | EIC Pathfinder | € 2.643.187 | 2022 | Details |
"Creation of innovative ""humidity to electricity"" renewable energy conversion technology towards sustainable energy challenge"
The CATCHER project aims to develop scalable technology for converting atmospheric humidity into renewable electricity, enhancing EU leadership in clean energy innovation.
Quantitative Ultrasound Stochastic Tomography - Revolutionizing breast cancer diagnosis and screening with supercomputing-based radiation-free imaging.
The project aims to revolutionize breast cancer imaging by developing adjoint-based algorithms for uncertainty quantification, enhancing diagnostic confidence through high-resolution, radiation-free images.
Dynamic Spatio-Temporal Modulation of Light by Phononic Architectures
Dynamo aims to revolutionize imaging technologies by enabling simultaneous light modulation at GHz rates, enhancing processing speed and positioning Europe as a leader in optical advancements.
Emerging technologies for crystal-based gamma-ray light sources
TECHNO-CLS aims to develop novel gamma-ray light sources using oriented crystals and high-energy particle beams, enhancing applications in various scientific fields through innovative technology.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Bioorthogonal Cascade-Targeting: Directing Drugs into Cells with Molecular PrecisionDevelop bioorthogonal cascade-targeting methods for precise, safe, and efficient intracellular delivery of therapeutics, enhancing drug targeting and minimizing collateral damage. | ERC STG | € 1.479.321 | 2023 | Details |
Nano-assisted digitalizing of cancer phenotyping for immunotherapyThe ImmunoChip project aims to develop a microfluidic device that analyzes cancer-immunity interactions to predict patient responses to immunotherapy, enhancing treatment efficacy and outcomes. | ERC COG | € 1.993.875 | 2023 | Details |
Preclinical validation and market analysis of a microMESH implant for brain cancer eradicationThe project aims to develop and validate a novel drug delivery implant, microMESH, for targeted chemo-immunotherapy in glioblastoma, enhancing treatment efficacy and patient outcomes. | ERC POC | € 150.000 | 2022 | Details |
Bioorthogonal Iontronic Chemistry: Spatiotemporal Drug Release with Electronic PrecisionDevelop a programmable drug delivery system using Biontronic Chemistry for precise spatiotemporal release, enhancing treatment efficacy while minimizing side effects in various therapies. | ERC STG | € 1.496.795 | 2024 | Details |
Bioorthogonal Cascade-Targeting: Directing Drugs into Cells with Molecular Precision
Develop bioorthogonal cascade-targeting methods for precise, safe, and efficient intracellular delivery of therapeutics, enhancing drug targeting and minimizing collateral damage.
Nano-assisted digitalizing of cancer phenotyping for immunotherapy
The ImmunoChip project aims to develop a microfluidic device that analyzes cancer-immunity interactions to predict patient responses to immunotherapy, enhancing treatment efficacy and outcomes.
Preclinical validation and market analysis of a microMESH implant for brain cancer eradication
The project aims to develop and validate a novel drug delivery implant, microMESH, for targeted chemo-immunotherapy in glioblastoma, enhancing treatment efficacy and patient outcomes.
Bioorthogonal Iontronic Chemistry: Spatiotemporal Drug Release with Electronic Precision
Develop a programmable drug delivery system using Biontronic Chemistry for precise spatiotemporal release, enhancing treatment efficacy while minimizing side effects in various therapies.