Bioorthogonal Implantable Iontronic Switch to Temporally Control the Local Release of Chemotherapeutics

The project aims to develop an implantable bioSWITCH for on-demand drug delivery to tumors, enhancing treatment efficacy and survival rates in pancreatic cancer.

Subsidie
€ 4.420.511
2023

Projectdetails

Introduction

Our vision for a new type of cancer treatment is based on an implantable therapeutic system capable of programmable on-demand delivery of drugs directly to the tumor.

Technology Overview

We conceive an implantable iontronic switch (bioSWITCH) to enable a spatiotemporally controlled administration of highly potent chemotherapeutics, without the need for systemic administration of (pro)drugs or drug conjugates.

This radically new technology will be realized by a combination of next-level tools. As a result, bioSWITCH can generate previously unobtainable discrete as well as continuous drug concentration profiles at the tumor site. Thus, it allows for the use of highly potent drugs that are otherwise not applicable due to high cytotoxicity.

Project Goals

The goal is to demonstrate the technology's potential to effectively interfere with tumor progression using a xenograft pancreas cancer mouse model. Efficiently shrinking tumors in size allows for surgical resection of previously non-operable tumors and dramatically increases survival rates.

Consortium and Impact

Our consortium of world-leading academics and pioneering SMEs will ensure the translation of this disruptive technology into the market to maximize the socioeconomic impact.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 4.420.511
Totale projectbegroting€ 4.420.511

Tijdlijn

Startdatum1-3-2023
Einddatum28-2-2026
Subsidiejaar2023

Partners & Locaties

Projectpartners

  • LINKOPINGS UNIVERSITETpenvoerder
  • TAGWORKS PHARMACEUTICALS BV
  • TECHNISCHE UNIVERSITAET WIEN
  • SUPRAPOLIX BV
  • MEDIZINISCHE UNIVERSITAT GRAZ
  • OBOE IPR AB
  • HUN-REN TERMESZETTUDOMANYI KUTATOKOZPONT

Land(en)

SwedenNetherlandsAustriaHungary

Vergelijkbare projecten binnen EIC Pathfinder

EIC Pathfinder

"Creation of innovative ""humidity to electricity"" renewable energy conversion technology towards sustainable energy challenge"

The CATCHER project aims to develop scalable technology for converting atmospheric humidity into renewable electricity, enhancing EU leadership in clean energy innovation.

€ 2.996.550
EIC Pathfinder

Quantitative Ultrasound Stochastic Tomography - Revolutionizing breast cancer diagnosis and screening with supercomputing-based radiation-free imaging.

The project aims to revolutionize breast cancer imaging by developing adjoint-based algorithms for uncertainty quantification, enhancing diagnostic confidence through high-resolution, radiation-free images.

€ 2.744.300
EIC Pathfinder

Dynamic Spatio-Temporal Modulation of Light by Phononic Architectures

Dynamo aims to revolutionize imaging technologies by enabling simultaneous light modulation at GHz rates, enhancing processing speed and positioning Europe as a leader in optical advancements.

€ 2.552.277
EIC Pathfinder

Emerging technologies for crystal-based gamma-ray light sources

TECHNO-CLS aims to develop novel gamma-ray light sources using oriented crystals and high-energy particle beams, enhancing applications in various scientific fields through innovative technology.

€ 2.643.187

Vergelijkbare projecten uit andere regelingen

ERC STG

Bioorthogonal Cascade-Targeting: Directing Drugs into Cells with Molecular Precision

Develop bioorthogonal cascade-targeting methods for precise, safe, and efficient intracellular delivery of therapeutics, enhancing drug targeting and minimizing collateral damage.

€ 1.479.321
ERC COG

Nano-assisted digitalizing of cancer phenotyping for immunotherapy

The ImmunoChip project aims to develop a microfluidic device that analyzes cancer-immunity interactions to predict patient responses to immunotherapy, enhancing treatment efficacy and outcomes.

€ 1.993.875
ERC POC

Preclinical validation and market analysis of a microMESH implant for brain cancer eradication

The project aims to develop and validate a novel drug delivery implant, microMESH, for targeted chemo-immunotherapy in glioblastoma, enhancing treatment efficacy and patient outcomes.

€ 150.000
ERC STG

Bioorthogonal Iontronic Chemistry: Spatiotemporal Drug Release with Electronic Precision

Develop a programmable drug delivery system using Biontronic Chemistry for precise spatiotemporal release, enhancing treatment efficacy while minimizing side effects in various therapies.

€ 1.496.795