Axon Initial Segment plasticity: unravelling the mechanisms that control neuronal excitability
This project aims to investigate the molecular mechanisms of axon initial segment plasticity in neurons and its implications for network homeostasis and diseases like Angelman Syndrome.
Projectdetails
Introduction
Neurons have the remarkable ability to continuously integrate and propagate information while maintaining their activity state within physiological range. The axon initial segment (AIS) is the keystone of neuronal excitability and pivotal for the maintenance of network homeostasis.
AIS Plasticity
The molecular organization of the AIS dictates the generation of action potentials, and thereby shapes the principal output of neurons. Although the AIS has long been considered as a static and passive structure, recent work from my lab and others demonstrated that network activity induces robust plasticity of the AIS, causing long-lasting changes in excitability. However, how AIS plasticity is regulated to maintain network homeostasis remains elusive.
Research Objectives
In this proposal, I aim to resolve, at the molecular level, how the AIS adapts in response to acute and chronic changes in neuronal activity and how maladaptation may lead to disease. To this end, I developed genome editing tools to label and manipulate endogenous AIS components, enabling live and super-resolution imaging of AIS organization.
Methodology
In combination with proteomics, optogenetics, and electrophysiology, this project will address the following key objectives:
- Resolve the nanoscale distribution and dynamics of AIS components.
- Unravel the mechanisms controlling acute and chronic re-distribution of ion channels during AIS plasticity and their consequences for excitability.
- Address the implication of maladaptive AIS plasticity in the pathology of Angelman Syndrome.
Conclusion
This project bridges the cell biology of the neuron to its physiology, provides new insights into how AIS plasticity orchestrates network activity, and identifies how maladaptation contributes to disease.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.494.740 |
Totale projectbegroting | € 1.494.740 |
Tijdlijn
Startdatum | 1-1-2024 |
Einddatum | 31-12-2028 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- STICHTING AMSTERDAM UMCpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Revealing the Landscape of Synaptic Diversity by Cell type- and Synapse-specific Proteomics and TranscriptomicsThis project aims to elucidate the molecular diversity of synapses by analyzing their proteomes and transcriptomes across different brain areas, using advanced sorting and profiling techniques. | ERC ADG | € 2.498.575 | 2022 | Details |
In situ structural basis of human axonopathiesThe cryoNERVE project aims to develop cryo-electron tomography workflows to analyze native nerve tissues, enhancing understanding of axonopathies and improving diagnostic precision for diseases like HSP and CMT. | ERC COG | € 1.986.750 | 2023 | Details |
Architecture of Peripheral Neuroimmune Circuits and SynapsesThis project aims to explore neuro-ILC2 interactions in vivo using innovative labelling tools to enhance understanding of neuroimmune dynamics and their implications for tissue health and disease. | ERC ADG | € 3.500.000 | 2024 | Details |
Growing Long Distance - RNA Control of Neuronal ExtensionThis project aims to uncover the molecular mechanisms of neuron growth by investigating the role of growth-inducing SINEs in axon elongation and stretch-induced growth regulation. | ERC ADG | € 2.500.000 | 2024 | Details |
Revealing the Landscape of Synaptic Diversity by Cell type- and Synapse-specific Proteomics and Transcriptomics
This project aims to elucidate the molecular diversity of synapses by analyzing their proteomes and transcriptomes across different brain areas, using advanced sorting and profiling techniques.
In situ structural basis of human axonopathies
The cryoNERVE project aims to develop cryo-electron tomography workflows to analyze native nerve tissues, enhancing understanding of axonopathies and improving diagnostic precision for diseases like HSP and CMT.
Architecture of Peripheral Neuroimmune Circuits and Synapses
This project aims to explore neuro-ILC2 interactions in vivo using innovative labelling tools to enhance understanding of neuroimmune dynamics and their implications for tissue health and disease.
Growing Long Distance - RNA Control of Neuronal Extension
This project aims to uncover the molecular mechanisms of neuron growth by investigating the role of growth-inducing SINEs in axon elongation and stretch-induced growth regulation.