Applying novel single-cell multiomics to elucidate leukaemia cell plasticity in resistance to targeted therapy

This project aims to develop a single-cell multiomics method to understand epigenetic resistance mechanisms in AML, enhancing treatment strategies against drug resistance.

Subsidie
€ 1.882.440
2024

Projectdetails

Introduction

Novel targeted therapies are increasingly applied against a wide range of cancers. Although such agents can induce cures, most patients suffer from relapsed disease.

Background on AML

Acute myeloid leukaemia (AML) is a prime example of a deadly disease, but we have a chance to dramatically improve outcomes if we can better understand resistance mechanisms against targeted agents that are transforming AML treatment, such as the BCL2 inhibitor venetoclax.

Epigenetic Alterations

AML is characterised by profound alterations in the epigenome that are correlated with poor survival. I therefore hypothesise that targeted drug pressure induces epigenetic plasticity that allows cancer cells to sample alternate chromatin or transcriptional states, a subset of which confer drug resistance.

Challenges in Therapy Responses

A major challenge is to define how mutations of epigenetic regulators in AML affect therapy responses due to clonal heterogeneity.

Research Methodology

To address this challenge, I will use and further develop my recently published single-cell Rapid Capture Hybridization sequencing (scRaCH-seq) method to link the genotype of expressed genes to transcription and methylation profiles of thousands of single cells.

Research Objectives

In this research proposal, I aim to:

  1. Develop a new method linking epigenetic landscape, genotype, and transcriptome at a single-cell level and define the impact of treatment on these interactions.
  2. Analyse the genome-wide impact of epigenetic therapies.
  3. Define the association between drug sensitivity and epigenetic modifications regulating pro-survival genes.

Application of Techniques

To achieve my goals, I will apply my novel single-cell multiomics to samples from AML patients treated with venetoclax alone or in combination with epigenetic therapies and apply state-of-the-art technologies to established laboratory models.

Conclusion

Our new approaches to fully understand the relationship between the genome, epigenome, and transcriptome will advance fundamental biology. This has the potential to yield new therapeutic strategies to prevent and overcome resistance.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 1.882.440
Totale projectbegroting€ 1.882.440

Tijdlijn

Startdatum1-1-2024
Einddatum31-12-2028
Subsidiejaar2024

Partners & Locaties

Projectpartners

  • STICHTING AMSTERDAM UMCpenvoerder

Land(en)

Netherlands

Vergelijkbare projecten binnen European Research Council

ERC STG

MANUNKIND: Determinants and Dynamics of Collaborative Exploitation

This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.

€ 1.497.749
ERC STG

Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure

The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.

€ 1.498.280
ERC STG

Uncovering the mechanisms of action of an antiviral bacterium

This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.

€ 1.500.000
ERC STG

The Ethics of Loneliness and Sociability

This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.

€ 1.025.860

Vergelijkbare projecten uit andere regelingen

ERC COG

Cancer cell plasticity on targeted therapy

This project aims to develop innovative cancer therapies by analyzing tumor heterogeneity and targeting drug-tolerant persister cells to prevent resistance and improve patient outcomes.

€ 2.000.000
ERC ADG

Decoding consequences of complex chromosomal aberrations by multi-modal single-cell deconstruction to overcome treatment-resistance cancer

SHATTER-AML aims to unravel the genomic complexities of acute myeloid leukemia with complex karyotype through advanced single-cell analysis to develop targeted therapies against treatment resistance.

€ 2.499.375
ERC COG

Elucidating the Spatial and Temporal Dynamics of Acute Myeloid Leukemia Progression Using Functional Omics and High-Throughput In Vivo Screening

This project aims to explore the spatial and temporal dynamics of tumor progression in Acute Myeloid Leukemia to identify critical factors influencing cancer pathogenicity and potential therapeutic targets.

€ 1.994.500
ERC COG

Dynamics of Adaptation and Resistance in Cancer: MApping and conTrolling Transcriptional and Epigenetic Recurrence

This project aims to uncover the mechanisms of drug resistance in colorectal cancer through innovative models and computational methods, ultimately improving treatment strategies and patient outcomes.

€ 1.995.582