Elucidating the Spatial and Temporal Dynamics of Acute Myeloid Leukemia Progression Using Functional Omics and High-Throughput In Vivo Screening
This project aims to explore the spatial and temporal dynamics of tumor progression in Acute Myeloid Leukemia to identify critical factors influencing cancer pathogenicity and potential therapeutic targets.
Projectdetails
Introduction
Advances in sequencing-based phylogenetic studies applied to cancer evolution have led to the observation that the linear accumulation of oncogenic alterations over individuals’ lifespan does not match the late life pattern of cancer incidence. It has thus become clear that beyond the sequential accumulation of oncogenic driver mutations, additional factors also support cancer outgrowth.
Hypothesis
The temporal and spatial dynamics of tumor evolution represent two of the most critical mutation-independent variables to consider. Hence, we hypothesized that the dual features of aging and spatial dissemination promote critical fitness gains that are at least as significant as driver mutations in cancer.
Goal
The goal of this proposal is to investigate the spatial and temporal determinants of tumor progression and to dissect the contributions of these processes to cancer pathogenicity.
Disease Model
Due to its quite unique occurrence pattern and propagation characteristics, Acute Myeloid Leukemia (AML) is the prototypical disease model that we have elected to template such spatiotemporal-dependent features of disease development.
Methodology
To study these features, we engineered two mouse models of leukemia dissemination and aging using serially-transplantable MLL-AF9-driven leukemic blasts. Using these two models, we propose to:
- Combine metabolomic- and epigenomic-based profiling to portray the spatiotemporal dynamics of leukemia growth.
- Deploy single-cell transcriptomics coupled with lineage tracing experiments to reveal the pre-deterministic attributes of such dynamics.
- Leverage innovative multimodal in vivo shRNA and CRISPRa screening approaches to pinpoint and functionally characterize the critical age- and dissemination-related effector genes involved in leukemic progression.
Potential Impact
The comprehensive analysis of their unknown function will potentially define new therapeutic routes in AML, and, given the holistic nature of the spatiotemporal characteristics studied, in other cancers as well.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.994.500 |
Totale projectbegroting | € 1.994.500 |
Tijdlijn
Startdatum | 1-3-2024 |
Einddatum | 28-2-2029 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALEpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Decoding consequences of complex chromosomal aberrations by multi-modal single-cell deconstruction to overcome treatment-resistance cancerSHATTER-AML aims to unravel the genomic complexities of acute myeloid leukemia with complex karyotype through advanced single-cell analysis to develop targeted therapies against treatment resistance. | ERC ADG | € 2.499.375 | 2022 | Details |
Decoding leukemia-immune cell dynamics by organism-wide cellular interaction mappingDevelop a novel 'interact-omics' approach to analyze cellular interactions in leukemia, aiming to enhance understanding of immune responses and therapy resistance mechanisms. | ERC STG | € 1.499.596 | 2023 | Details |
PLASTicity of Endothelial Cell as new Target for acute myeloId leukemia TherapYThis project aims to investigate embryonic-like endothelial cells in acute myeloid leukemia to identify therapeutic targets that enhance treatment responses and improve patient outcomes. | ERC STG | € 1.499.000 | 2024 | Details |
Applying novel single-cell multiomics to elucidate leukaemia cell plasticity in resistance to targeted therapyThis project aims to develop a single-cell multiomics method to understand epigenetic resistance mechanisms in AML, enhancing treatment strategies against drug resistance. | ERC STG | € 1.882.440 | 2024 | Details |
Decoding consequences of complex chromosomal aberrations by multi-modal single-cell deconstruction to overcome treatment-resistance cancer
SHATTER-AML aims to unravel the genomic complexities of acute myeloid leukemia with complex karyotype through advanced single-cell analysis to develop targeted therapies against treatment resistance.
Decoding leukemia-immune cell dynamics by organism-wide cellular interaction mapping
Develop a novel 'interact-omics' approach to analyze cellular interactions in leukemia, aiming to enhance understanding of immune responses and therapy resistance mechanisms.
PLASTicity of Endothelial Cell as new Target for acute myeloId leukemia TherapY
This project aims to investigate embryonic-like endothelial cells in acute myeloid leukemia to identify therapeutic targets that enhance treatment responses and improve patient outcomes.
Applying novel single-cell multiomics to elucidate leukaemia cell plasticity in resistance to targeted therapy
This project aims to develop a single-cell multiomics method to understand epigenetic resistance mechanisms in AML, enhancing treatment strategies against drug resistance.