Tuning of PHOtonic resonators
This project aims to enhance the reproducibility of silicon photonic devices by applying a patented technique to correct manufacturing errors, achieving precise tuning and identical resonators.
Projectdetails
Introduction
Silicon photonics has progressed enormously over the last 15 years. Large microelectronics manufacturers and small companies are now working on the subject, with identified products.
Technological Barriers
The reproducibility of micro and nanophotonic devices remains a central technological barrier that needs to be broken. The dimension errors of cleanroom devices are between 1 to 10 nanometers (1%), which limits applications.
Innovative Technique
We have discovered a technique that makes it possible to absorb these errors at the end of manufacturing, permanently.
Key Features of the Technique
- We can tune photonic resonators with an accuracy of 10^(-4).
- We can make them strictly identical when necessary.
Project Overview
In this POC project, the patented technique will be transposed onto silicon devices of interest, in a simple configuration for manufacturers.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-12-2023 |
Einddatum | 31-5-2025 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRSpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Tunable and Reconfigurable NanoacousticsThis project aims to develop tunable nanodevices using responsive materials to harness acoustic phonons for wavelength conversion and simulating complex systems in solid-state physics. | ERC COG | € 2.999.801 | 2023 | Details |
Spins Interfaced with Light for Quantum Silicon technologiesThe SILEQS project aims to demonstrate indistinguishable single-photon emission and spin control from silicon defects to enable scalable quantum communication technologies. | ERC STG | € 1.500.000 | 2022 | Details |
Tunable Nanoengineered Transition Metal Dichalcogenides for Quantum NanophotonicsThe TuneTMD project aims to develop a tunable on-chip integrated optical circuit using nanoengineered TMDs to create identical single photons for quantum computing applications. | ERC STG | € 1.499.578 | 2023 | Details |
Silicon opto-electro-mechanics for bridging the gap between photonics and microwavesThe SPRING project aims to achieve efficient microwave-optical conversion and quantum state transfer using a novel optomechanical coupling approach in silicon chips for advanced communication and computing applications. | ERC COG | € 2.491.486 | 2024 | Details |
Tunable and Reconfigurable Nanoacoustics
This project aims to develop tunable nanodevices using responsive materials to harness acoustic phonons for wavelength conversion and simulating complex systems in solid-state physics.
Spins Interfaced with Light for Quantum Silicon technologies
The SILEQS project aims to demonstrate indistinguishable single-photon emission and spin control from silicon defects to enable scalable quantum communication technologies.
Tunable Nanoengineered Transition Metal Dichalcogenides for Quantum Nanophotonics
The TuneTMD project aims to develop a tunable on-chip integrated optical circuit using nanoengineered TMDs to create identical single photons for quantum computing applications.
Silicon opto-electro-mechanics for bridging the gap between photonics and microwaves
The SPRING project aims to achieve efficient microwave-optical conversion and quantum state transfer using a novel optomechanical coupling approach in silicon chips for advanced communication and computing applications.