Spins Interfaced with Light for Quantum Silicon technologies

The SILEQS project aims to demonstrate indistinguishable single-photon emission and spin control from silicon defects to enable scalable quantum communication technologies.

Subsidie
€ 1.500.000
2022

Projectdetails

Introduction

Leveraging the success of the microelectronics and integrated photonics industries, silicon is one of the most promising platforms for developing large-scale quantum technologies. Quantum chips already available in silicon rely on either long-lived electrical qubits based on individual quantum dots or single donors, or on photonic qubits probabilistically generated by non-linear optical processes.

Objective

Another type of quantum system could combine the advantages of both former qubits by featuring at the same time a stationary qubit with long coherence times and an optical interface adapted to long-distance exchange of quantum information. However, such a qubit that would be associated with optically-active spin defects is still to be demonstrated in silicon. This is the challenging objective of the current project.

Background

The starting point of the SILEQS project is the recent discovery that silicon hosts many fluorescent point defects that can be optically isolated at a single scale, and furthermore emit at the near-infrared range and telecom bands associated with minimal losses in optical fibers.

Goals

This project aims to demonstrate for the first time in silicon:

  1. The indistinguishable single-photon emission from individual defects.
  2. The control over their spin degrees of freedom to create multi-spin quantum registers coupled to single photons.

Impact

Such achievements would open the door to developing silicon-integrated deterministic sources of photonic qubits and spin qubits interfaced with light for long-distance quantum communications in a platform adapted to large-scale nanofabrication and integration.

Considering the advanced nanotechnology based on silicon, the SILEQS project could have significant impact in quantum technologies, including:

  • Quantum integrated photonics
  • Large-scale quantum networks
  • Solid-state hybrid quantum systems

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 1.500.000
Totale projectbegroting€ 1.500.000

Tijdlijn

Startdatum1-10-2022
Einddatum30-9-2027
Subsidiejaar2022

Partners & Locaties

Projectpartners

  • CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRSpenvoerder

Land(en)

France

Vergelijkbare projecten binnen European Research Council

ERC STG

MANUNKIND: Determinants and Dynamics of Collaborative Exploitation

This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.

€ 1.497.749
ERC STG

Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure

The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.

€ 1.498.280
ERC STG

Uncovering the mechanisms of action of an antiviral bacterium

This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.

€ 1.500.000
ERC STG

The Ethics of Loneliness and Sociability

This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.

€ 1.025.860

Vergelijkbare projecten uit andere regelingen

EIC Transition

Developing Multi-Core Silicon-Based Quantum Processors

The project aims to develop a scalable FDSOI-based quantum processor demonstrator with a 4X4 multi-core architecture to bridge the gap between semiconductor techniques and quantum computing needs.

€ 2.440.870
ERC COG

Optical Entanglement of Nuclear Spins in Silicon

OpENSpinS aims to enhance silicon-based quantum information processing by using erbium nuclear spins as qubits, enabling long-distance entanglement and scalable quantum networks through advanced photonic integration.

€ 1.984.375
EIC Pathfinder

ENABLING NEW QUANTUM FRONTIERS WITH SPIN ACOUSTICS IN SILICON

This project aims to develop a scalable silicon-based quantum information platform by enhancing qubit control, readout, and coupling mechanisms, fostering collaboration across Europe for advanced quantum computing.

€ 3.235.322
EIC Pathfinder

Quantum-Optic Silicon as a Commodity: Extending the Trust Continuum till the Edge of ICT Networks

QOSiLICIOUS aims to simplify quantum key distribution by integrating QRNG and QKD on silicon for cost-effective, compact solutions in secure communication across various markets.

€ 3.481.857