Solid-State Ionics Synaptic Transistors for Neuromorphic Computing
TRANSIONICS aims to develop stable, silicon-compatible solid-state synaptic transistors for neuromorphic computing, enhancing AI applications while ensuring scalability and integration with existing technology.
Projectdetails
Introduction
Neuromorphic computing will revolutionize artificial intelligence for applications such as autonomous driving, smart diagnosis, or natural-language understanding by emulating the operation of efficient biological neural networks. The main challenge in this field is the substitution of conventional transistors for synaptic transistors able to learn in ways similar to a neural synapse, i.e., the development of multistate non-volatile transistors.
Current Challenges
However, currently existing synaptic transistors have been developed using electrolytes that are by nature unstable and difficult to integrate, such as ionic liquids or proton conducting polymers.
Project Overview
TRANSIONICS will deliver highly stable (non-volatile), silicon-compatible, and scalable solid-state synaptic transistors by exploiting the first-ever room temperature oxide-ionic electrolyte developed in the ERC CoG grant (ULTRASOFC) held by the PI.
Technology Features
TRANSIONICS transistors are able to modulate their channel properties with external stimuli like real neurons by reducing/oxidizing a mixed ionic-electronic conductor unveiled at ULTRASOFC. Additionally, TRANSIONICS is compatible with mainstream microelectronics fabrication technology, which makes it ideal for developing high-density brain-like computer chips.
Project Goals
The goals of the TRANSIONICS project are:
- To evaluate the technical feasibility for the fabrication of unique all-solid-oxide synaptic transistors with lateral architecture.
- To assess the silicon compatibility and scalability of the TRANSIONICS transistors.
- To define an IPR strategy for technology transfer.
- To build a value proposition for a startup company and to identify customer segments with industrial partners.
Team Composition
To achieve these goals, the PI has assembled a project team that combines applied research, technology transfer, and market uptake expertise.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-6-2022 |
Einddatum | 30-11-2023 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- FUNDACIO INSTITUT DE RECERCA DE L'ENERGIA DE CATALUNYApenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Soft optoelectronics and ion-based circuits for diagnostics and closed-loop neuromodulation of the auditory pathwayDevelop a fully implantable, biocompatible electro-optical neurostimulation system using ion gated transistors and OLEDs to enhance neural signal acquisition and treatment of sensory dysfunctions. | ERC STG | € 1.499.213 | 2023 | Details |
Understanding and Engineering Resistive Switching towards Robust Neuromorphic SystemsThe project aims to develop a reliable resistive switching technology using high entropy oxides to enhance neuromorphic systems for efficient machine learning through device-system co-optimization. | ERC STG | € 2.446.250 | 2024 | Details |
Hybrid Spintronic Synapses for Neuromorphic ComputingSpin-Ion Technologies aims to develop neuromorphic chips using ion beam-engineered magnetic materials, bridging computational neuroscience and deep learning for efficient embedded systems. | EIC Transition | € 2.499.998 | 2023 | Details |
In-operando growth of organic mixed ionic-electronic conductors for brain-inspired electronicsThe INFER project aims to develop brain-inspired bioelectronic devices using organic mixed ionic-electronic conductors for localized signal processing and enhanced biocompatibility. | ERC COG | € 1.999.980 | 2024 | Details |
Soft optoelectronics and ion-based circuits for diagnostics and closed-loop neuromodulation of the auditory pathway
Develop a fully implantable, biocompatible electro-optical neurostimulation system using ion gated transistors and OLEDs to enhance neural signal acquisition and treatment of sensory dysfunctions.
Understanding and Engineering Resistive Switching towards Robust Neuromorphic Systems
The project aims to develop a reliable resistive switching technology using high entropy oxides to enhance neuromorphic systems for efficient machine learning through device-system co-optimization.
Hybrid Spintronic Synapses for Neuromorphic Computing
Spin-Ion Technologies aims to develop neuromorphic chips using ion beam-engineered magnetic materials, bridging computational neuroscience and deep learning for efficient embedded systems.
In-operando growth of organic mixed ionic-electronic conductors for brain-inspired electronics
The INFER project aims to develop brain-inspired bioelectronic devices using organic mixed ionic-electronic conductors for localized signal processing and enhanced biocompatibility.