Single-Cell Metabolomics for Drug Discovery and Development
The project aims to commercialize single-cell metabolomics technology to enhance drug safety by revealing off-target effects and metabolic responses in drug candidates.
Projectdetails
Introduction
Despite the major efforts in modern drug discovery and development, the field is still in crisis with productivity increasingly declining. A major source of drug development failure is toxicity, where the adverse drug reaction is often caused by off-target effects of drug candidates that can be revealed only late in the drug development process.
Metabolomics as a Solution
Metabolomics has been proposed as an emerging promising approach to monitor off-target effects on metabolic enzymes or transporters, thus providing mechanistic understanding of drug toxicity.
Challenges in Metabolomics
However, there are multiple challenges in applying metabolomics in this context, including:
- The inability to resolve the drug metabolic response on the single-cell level.
Project Proposal
In this PoC project, we propose to commercialize the technology of single-cell metabolomics developed in the ERC CoG project METACELL. Specifically, we propose using our single-cell metabolomics technology in conjunction with the data-driven metabolic modulation approach for:
- Revealing single-cell metabolic response
- Understanding the metabolic mode of action of drugs and drug candidates.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-11-2022 |
Einddatum | 30-4-2024 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- EUROPEAN MOLECULAR BIOLOGY LABORATORYpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Revealing cellular behavior with single-cell multi-omicsDevelop a single-cell multi-omics approach to analyze β-cell heterogeneity and metabolism, aiming to uncover insights into diabetes-related dysfunction and potential treatment targets. | ERC STG | € 2.499.864 | 2022 | Details |
dAta-dRiven integrated approaches to CHemIcal safety assessMEnt and Drug dEvelopmentThe ARCHIMEDES project aims to revolutionize chemical and drug development by integrating toxicogenomics, AI, and a Knowledge Graph to enhance safety and innovation in a regulatory-compliant manner. | ERC COG | € 2.000.000 | 2022 | Details |
Learning and modeling the molecular response of single cells to drug perturbationsDeepCell aims to model cellular responses to drug perturbations using multiomics and deep learning, facilitating optimal treatment design and expediting drug discovery in clinical settings. | ERC ADG | € 2.497.298 | 2023 | Details |
Metabolomics-driven Molecular Source Analysis for personalized medicine in childrenMeMoSA aims to enhance personalized medicine for children by identifying gastrointestinal metabolite sources through advanced metabolomics and machine learning, improving disease prevention and treatment efficacy. | ERC COG | € 1.999.763 | 2024 | Details |
Revealing cellular behavior with single-cell multi-omics
Develop a single-cell multi-omics approach to analyze β-cell heterogeneity and metabolism, aiming to uncover insights into diabetes-related dysfunction and potential treatment targets.
dAta-dRiven integrated approaches to CHemIcal safety assessMEnt and Drug dEvelopment
The ARCHIMEDES project aims to revolutionize chemical and drug development by integrating toxicogenomics, AI, and a Knowledge Graph to enhance safety and innovation in a regulatory-compliant manner.
Learning and modeling the molecular response of single cells to drug perturbations
DeepCell aims to model cellular responses to drug perturbations using multiomics and deep learning, facilitating optimal treatment design and expediting drug discovery in clinical settings.
Metabolomics-driven Molecular Source Analysis for personalized medicine in children
MeMoSA aims to enhance personalized medicine for children by identifying gastrointestinal metabolite sources through advanced metabolomics and machine learning, improving disease prevention and treatment efficacy.