Revealing cellular behavior with single-cell multi-omics
Develop a single-cell multi-omics approach to analyze β-cell heterogeneity and metabolism, aiming to uncover insights into diabetes-related dysfunction and potential treatment targets.
Projectdetails
Introduction
Chemical reactions govern cellular behavior and are revealed by the analysis of small molecules involved in intracellular metabolism. Individual cells in biological systems continuously adapt to improve survival and biological function, making them chemically and behaviorally heterogeneous. Unraveling this heterogeneity is essential to realize the correlation to disease state and health, but it is masked in bulk analyses of millions of cells.
Proposed Analytical Approach
I propose to develop a groundbreaking analytical approach for multi-omics of living individual cells to reveal variability in cellular behavior. This will be achieved by:
- Coupling a microfluidic device that enables controlled chemical exposure of a cell.
- Integrating an efficient ionization probe for on-line time-resolved mass spectrometric measurements.
By measuring the dynamics of each cell’s metabolome, lipidome, and secretome, novel insights into heterogeneity in intracellular activities will be gained. In addition, the level of heterogeneity will be uncovered through correlation with the cell’s transcriptome.
Focus on β-Cells
A special emphasis will be given to characterize individual β-cells that are key regulators of blood glucose by insulin secretion and whose dysfunction leads to type 2 diabetes. The behavior of individual β-cells is heterogeneous and ranges from:
- Complete failure to secrete insulin
- Compensating with increased secretion
I will use the single-cell multi-omics approach to test the hypothesis that intracellular metabolism is the key to β-cell dysfunction. The analysis will focus on healthy and diabetic β-cells upon chemical exposure to establish:
i) Their metabolic heterogeneity and differences
ii) Variations and temporal dynamics in their metabolic behavior
iii) Metabolic roadblocks that correlate with β-cell dysfunction
Conclusion
The single-cell multi-omics approach will open new horizons for understanding cellular heterogeneity, realizing cellular behavior that promotes health, and identifying treatment targets.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.499.864 |
Totale projectbegroting | € 2.499.864 |
Tijdlijn
Startdatum | 1-9-2022 |
Einddatum | 31-8-2027 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- UPPSALA UNIVERSITETpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Learning and modeling the molecular response of single cells to drug perturbationsDeepCell aims to model cellular responses to drug perturbations using multiomics and deep learning, facilitating optimal treatment design and expediting drug discovery in clinical settings. | ERC ADG | € 2.497.298 | 2023 | Details |
Learning and modeling the molecular response of single cells to drug perturbations
DeepCell aims to model cellular responses to drug perturbations using multiomics and deep learning, facilitating optimal treatment design and expediting drug discovery in clinical settings.