self-PoweRed cONductimeter for digiTalization of rapid mOlecular diagnostics
PRONTO aims to develop a low-cost, self-powered conductimetric sensor for rapid, sensitive detection of infectious diseases, making advanced testing accessible in low- and medium-income countries.
Projectdetails
Introduction
Despite huge progress in prevention and treatment over the past century, infectious diseases still impose a great health burden. For this reason, lab-centralised immunoassays and nucleic acid tests that allow for specific pathogen identification with limits of detection reaching a few copies per ml of sample are readily available and supported by both national and private health systems in the developed world.
Accessibility Issues
However, these tests are neither affordable nor accessible to patients in low- and medium-income countries. Fortunately, lateral flow antigen-based tests have proven to be a fast, reliable, and affordable tool to detect a wide range of pathogens.
Limitations of Current Tests
However, such tests suffer from cross-reactivity with related bacterial or viral species and, more importantly, they often require 10^5 pathogens per mL to yield a positive result.
Clinical and Technological Need
It becomes clear that there is a clinical and technological need to develop rapid tests that combine PCR sensitivity—able to detect one copy per mL—with lateral flow affordability.
Proposed Solution
PRONTO proposes a novel low-cost, sustainable, and self-powered readout system for nucleic acid detection based on conductimetry. The key component consists of a paper-based and single-use self-powered conductimetric sensor developed during the ERC Consolidator Grant SUPERCELL.
Unique Sensing Approach
The sensing approach is unique and minimalistic, as it breaks the classic paradigm of sensor-electronics-battery. The sensor and the power source are merged into one element while making the detection system energetically autonomous.
Global Impact
The simplicity of the approach will enable the deployment of highly sensitive and digital tests for infectious diseases at affordable prices and in a sustainable manner at a global scale.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-6-2023 |
Einddatum | 30-11-2024 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- AGENCIA ESTATAL CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICASpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
ECL-based Infectious Pathogen (bio)SEnsorECLIPSE aims to develop a portable, cost-effective platform using ultrasensitive detection methods for rapid identification of infectious pathogens, enhancing response to future pandemics. | EIC Pathfinder | € 2.683.996 | 2022 | Details |
Leveraging CRISPR-Cas for fast and accurate point-of-care diagnosticsScope Biosciences aims to validate its patented CRISPR-Cas diagnostic technology, scopeDx, for rapid, accurate, and adaptable point-of-care diagnostics in healthcare. | EIC Transition | € 2.498.125 | 2024 | Details |
Microfluïde assay on-a-chip voor detectie bacteriële infectiesLevels Diagnostics en Digi.Bio ontwikkelen een innovatieve lab-on-a-chip test voor snelle en betrouwbare differentiatie tussen virale en bacteriële luchtweginfecties om onnodig antibioticagebruik te verminderen. | MIT R&D Samenwerking | € 180.528 | 2018 | Details |
ECL-based Infectious Pathogen (bio)SEnsor
ECLIPSE aims to develop a portable, cost-effective platform using ultrasensitive detection methods for rapid identification of infectious pathogens, enhancing response to future pandemics.
Leveraging CRISPR-Cas for fast and accurate point-of-care diagnostics
Scope Biosciences aims to validate its patented CRISPR-Cas diagnostic technology, scopeDx, for rapid, accurate, and adaptable point-of-care diagnostics in healthcare.
Microfluïde assay on-a-chip voor detectie bacteriële infecties
Levels Diagnostics en Digi.Bio ontwikkelen een innovatieve lab-on-a-chip test voor snelle en betrouwbare differentiatie tussen virale en bacteriële luchtweginfecties om onnodig antibioticagebruik te verminderen.