Reliable and scalable procedures for the isolation and loading of extracellular vesicles
LABORIOUS aims to develop innovative methods for isolating and loading therapeutic agents into exosomes, enhancing their clinical application in various diseases while minimizing membrane damage.
Projectdetails
Introduction
Exosome-based therapies are among the hottest topics in biomedical research, driven by the unique properties of exosomes regarding stability, low immunogenicity, prolonged circulation, and especially, selective targeting. In 2022, over 50 clinical trials using exosomes for therapy were underway, in diseases ranging from cancer to diabetes to central nervous system disorders.
Challenges in Exosome Research
However, both current research on exosomes and their future translation into clinical therapies are hindered by two significant problems.
Isolation of Exosomes
The first issue is the isolation of exosomes (and of extracellular vesicles in general), a highly challenging task due to:
- The high complexity of the body fluids that contain them.
- The delicate nature of exosomes themselves: soft entities of 50-150 nm whose membrane is responsible for key properties and must be preserved.
Ultracentrifugation, the standard isolation method, has clear limitations:
- Low yields
- Impurity of the products
- Damage to exosomal membranes due to long processing times at high g
While numerous alternatives have been commercialized (size, affinity, and precipitation-based methods), these issues remain unsolved.
Loading of Therapeutic Agents
The second problem relates to the loading of therapeutic agents (nanoparticles, drugs, siRNA, miRNA) into exosomes without damaging their membranes, another challenge without a solution today.
Proposed Solutions
LABORIOUS leverages the experience gained in AdG CADENCE to propose innovative solutions.
Innovative Techniques
- A novel tangential filtration procedure will segregate exosomes by size, removing impurities and minimizing pressure-induced membrane damage.
- A pioneering continuous electroporation system will provide unprecedented control, allowing the loading of therapeutic cargo with minimal membrane disruption.
Results will be closely monitored for patenting and commercialization, in collaboration with an industrial observer.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-5-2024 |
Einddatum | 31-10-2025 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- UNIVERSIDAD DE ZARAGOZApenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
automated in-line separatioN and dEtection of eXtracellular vesicles for liqUid biopsy applicationSThe NEXUS project aims to industrialize a customizable platform for the separation and analysis of extracellular vesicles from biofluids, enhancing cancer diagnostics and monitoring. | EIC Transition | € 2.497.750 | 2022 | Details |
Unravelling extracellular vesicle heterogeneity to inspire improved therapeutic RNA delivery systemsUNRAVEL aims to characterize extracellular vesicle subpopulations for enhanced RNA delivery, leading to the development of biomimetic synthetic RNA delivery systems to improve therapeutic applications. | ERC COG | € 2.000.000 | 2025 | Details |
Geintegreerd systeem voor fractionering karakterisatie en kwantificatie van extracellulaire blaasjes en hun inhoudCelnext Biotechnologies onderzoekt de haalbaarheid van een geïntegreerd microfluidisch systeem met optische biosensoren voor gestandaardiseerde isolatie en analyse van extracellulaire blaasjes (EBs). | MIT Haalbaarheid | € 20.000 | 2021 | Details |
automated in-line separatioN and dEtection of eXtracellular vesicles for liqUid biopsy applicationS
The NEXUS project aims to industrialize a customizable platform for the separation and analysis of extracellular vesicles from biofluids, enhancing cancer diagnostics and monitoring.
Unravelling extracellular vesicle heterogeneity to inspire improved therapeutic RNA delivery systems
UNRAVEL aims to characterize extracellular vesicle subpopulations for enhanced RNA delivery, leading to the development of biomimetic synthetic RNA delivery systems to improve therapeutic applications.
Geintegreerd systeem voor fractionering karakterisatie en kwantificatie van extracellulaire blaasjes en hun inhoud
Celnext Biotechnologies onderzoekt de haalbaarheid van een geïntegreerd microfluidisch systeem met optische biosensoren voor gestandaardiseerde isolatie en analyse van extracellulaire blaasjes (EBs).