Unravelling extracellular vesicle heterogeneity to inspire improved therapeutic RNA delivery systems
UNRAVEL aims to characterize extracellular vesicle subpopulations for enhanced RNA delivery, leading to the development of biomimetic synthetic RNA delivery systems to improve therapeutic applications.
Projectdetails
Introduction
The growing number of classes of RNA therapeutics, including siRNA, mRNA, and RNA components of the CRISPR/Cas9 machinery, hold the promise of providing new treatment possibilities for almost any disease. However, these interventions require delivery of therapeutic RNA to their final intracellular targets in diseased cells, and delivery efficiency by current RNA nanocarriers is unsatisfactory.
Background
Endogenous nanoparticles called extracellular vesicles (EVs) have emerged as promising novel RNA delivery systems due to their intrinsic ability to transfer biological cargo between cells in a selective manner. In fact, with my ERC StG, I have shown that EVs outperform synthetic carriers in terms of RNA delivery efficiency.
Challenges
However, EVs are a heterogeneous population of vesicles that differ in their targeting and cargo delivery properties, which forms a hurdle for the design of EV-based delivery systems. As methods to separate EV subpopulations and study their characteristics individually are lacking, a fundamentally different approach to address this hurdle is necessary.
Objectives
The aim of UNRAVEL is to reveal how variations in EV composition lead to specialized subpopulations with unique delivery features. Using this knowledge, I will develop the first biomimetic class of EV-inspired synthetic RNA delivery systems. I will pursue three objectives:
- Identify EV subpopulations with unique targeting and RNA delivery properties using a novel EV barcoding strategy.
- Define these EV subpopulations in terms of unique surface properties, intracellular trafficking, and cargo release.
- Apply this knowledge to improve synthetic RNA delivery systems by incorporating molecular features from EV subpopulations.
Impact
This work will significantly advance our understanding of the natural targeting and RNA delivery mechanisms of EV subpopulations and may result in a new generation RNA delivery system based on EV mimetics. In turn, this will allow more widespread application of RNA therapeutics.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.000.000 |
Totale projectbegroting | € 2.000.000 |
Tijdlijn
Startdatum | 1-2-2025 |
Einddatum | 31-1-2030 |
Subsidiejaar | 2025 |
Partners & Locaties
Projectpartners
- UNIVERSITAIR MEDISCH CENTRUM UTRECHTpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Decoding Extracellular Vesicle-mediated organ crosstalk in vivoThis project aims to investigate hepatic extracellular vesicle-mediated inter-organ communication in vivo using a transparent zebrafish model to enhance understanding of their role in health and disease. | ERC STG | € 1.500.000 | 2023 | Details |
Principles of endogenous and therapeutic mRNA turnover in vivoThe ViveRNA project aims to enhance mRNA metabolism understanding through an improved sequencing pipeline and analyses, ultimately enabling the design of more effective mRNA therapeutics. | ERC ADG | € 2.499.875 | 2023 | Details |
nanoVAST: a novel, non- viral LNP for precision payload delivery of genome editors and other cargoThe project aims to develop the nanoVAST system for targeted RNA delivery to CD19+ B cells, enhancing specificity and efficiency while avoiding the drawbacks of current delivery methods. | ERC POC | € 150.000 | 2022 | Details |
Kits for advanced polymer-lipid nanocarriers for targeted delivery of RNAs to cardiac and skeletal muscle cellsPOLIRNA aims to develop a versatile platform for safe and efficient RNA delivery to target multiple cell types, enhancing preclinical research in cardiac and muscle-related diseases. | ERC POC | € 150.000 | 2023 | Details |
Decoding Extracellular Vesicle-mediated organ crosstalk in vivo
This project aims to investigate hepatic extracellular vesicle-mediated inter-organ communication in vivo using a transparent zebrafish model to enhance understanding of their role in health and disease.
Principles of endogenous and therapeutic mRNA turnover in vivo
The ViveRNA project aims to enhance mRNA metabolism understanding through an improved sequencing pipeline and analyses, ultimately enabling the design of more effective mRNA therapeutics.
nanoVAST: a novel, non- viral LNP for precision payload delivery of genome editors and other cargo
The project aims to develop the nanoVAST system for targeted RNA delivery to CD19+ B cells, enhancing specificity and efficiency while avoiding the drawbacks of current delivery methods.
Kits for advanced polymer-lipid nanocarriers for targeted delivery of RNAs to cardiac and skeletal muscle cells
POLIRNA aims to develop a versatile platform for safe and efficient RNA delivery to target multiple cell types, enhancing preclinical research in cardiac and muscle-related diseases.