POLARSENSE: Polaritonic compact gas sensor demonstrator
POLARSENSE aims to develop a compact, CMOS-compatible optical gas sensor chip using a graphene platform for high-sensitivity detection of multiple gases in portable devices.
Projectdetails
Introduction
Monitoring gases and particles through the use of smart sensors has a crucial role in a wide range of applications, from environmental control to breath analysis for diagnostics. With the information provided by these sensors, we are able to predict, prevent, and act in potentially dangerous situations.
Requirements for Gas Sensors
In order for the data to be effectively transferred, the gas sensors must be integrated into portable devices with wireless connectivity and must be miniaturized concurrently. To meet this requirement, the sensors must possess:
- High sensitivity
- Selectivity
- Speed
- Ultra-low power consumption
- Compatibility with silicon technology
However, currently no existing technology on the market fulfills all of these criteria.
Project Overview
POLARSENSE aims to develop an optical (infrared) gas sensor demonstrator chip based on a novel graphene electro-polaritonic platform that is designed to address all of the aforementioned technical and commercial requirements.
Functionality and Performance
This will be demonstrated through its functionality and performance, with the capability of detecting multiple gases in a scalable, CMOS compatible system with a sensitivity of 0.1 ppm. The system will include:
- Specific optically active elements
- An electrical detector all integrated within one single device
The result is a highly compact and efficient sensing platform that does not require an external photodetector.
Development Process
To achieve this, POLARSENSE will:
- Simulate, design, and fabricate a demonstrator chip in accordance with the specifications of our industrial partners.
- Test with a compact interferometer with a broadband infrared source to evaluate the performance.
Validation of Sensing Performance
We will then validate the sensing performance of the demonstrator system with acetone gas in a matrix containing different concentrations of ethanol and/or water vapor that are typically present in breath analyzer and environmental monitoring applications.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-7-2023 |
Einddatum | 31-12-2024 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- FUNDACIO INSTITUT DE CIENCIES FOTONIQUESpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Kinetic selectivity in molecular sieve sensorsKISSIES aims to develop a novel sensor technology using tailored metal-organic frameworks to selectively detect volatile organic compounds in complex environments, enhancing applications in health and safety. | ERC COG | € 2.480.500 | 2022 | Details |
Miniaturized plasma emission spectroscopy-based breath analysis for unobtrusive at-home monitoring and prediction of COPD exacerbationsThe Breath-Sense project aims to develop a hand-held breathalyzer for continuous at-home monitoring of COPD, enabling timely exacerbation prediction and reducing hospitalizations by up to 95%. | EIC Pathfinder | € 3.505.325 | 2023 | Details |
UNIVERSAL SENSOR BASED ON ELECTRICALLY-PUMPED MID-INFRARED SPECTROMETER ON SILICON CHIPSUNISON aims to develop a compact, high-performance mid-IR spectroscopy platform for detecting greenhouse and toxic gases, enabling widespread use in IoT applications. | EIC Pathfinder | € 2.998.045 | 2024 | Details |
FaradaIC: Miniaturising Gas Sensors to enable new sensing possibilities in IoT devicesFaradaIC aims to revolutionize gas sensing by introducing the first miniaturized, cost-effective electrochemical O2 sensor for diverse industries, leveraging advanced materials and semiconductor technology. | EIC Accelerator | € 2.455.250 | 2023 | Details |
Kinetic selectivity in molecular sieve sensors
KISSIES aims to develop a novel sensor technology using tailored metal-organic frameworks to selectively detect volatile organic compounds in complex environments, enhancing applications in health and safety.
Miniaturized plasma emission spectroscopy-based breath analysis for unobtrusive at-home monitoring and prediction of COPD exacerbations
The Breath-Sense project aims to develop a hand-held breathalyzer for continuous at-home monitoring of COPD, enabling timely exacerbation prediction and reducing hospitalizations by up to 95%.
UNIVERSAL SENSOR BASED ON ELECTRICALLY-PUMPED MID-INFRARED SPECTROMETER ON SILICON CHIPS
UNISON aims to develop a compact, high-performance mid-IR spectroscopy platform for detecting greenhouse and toxic gases, enabling widespread use in IoT applications.
FaradaIC: Miniaturising Gas Sensors to enable new sensing possibilities in IoT devices
FaradaIC aims to revolutionize gas sensing by introducing the first miniaturized, cost-effective electrochemical O2 sensor for diverse industries, leveraging advanced materials and semiconductor technology.