FaradaIC: Miniaturising Gas Sensors to enable new sensing possibilities in IoT devices
FaradaIC aims to revolutionize gas sensing by introducing the first miniaturized, cost-effective electrochemical O2 sensor for diverse industries, leveraging advanced materials and semiconductor technology.
Projectdetails
Introduction
FaradaIC is bringing to the market the first miniaturised electrochemical O2 gas sensor to enable new sensing opportunities across different industries where a small, chip-based sensor is demanded (breathing devices, fitness, medical, hydrogen economy, etc).
Problem Statement
Gas sensors today are too large and expensive for the IoT devices that device manufacturers want to build. This problem is particularly painful when O2 gas sensing is needed since no miniaturised, cost-effective, chip-based O2 gas sensor is available commercially.
Solution Approach
We are combining the world of cutting-edge synthetic chemistry and advanced materials with the world of semiconductor manufacturing and microfabrication to achieve smaller, cost-effective and power-efficient gas sensor technology.
Unique Position
We are the first company worldwide that has successfully miniaturised the electrochemical variety. Our goal is to lead the next sensor revolution with our gas sensing platform, untapping all the potential of gas sensing in multiple markets.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.455.250 |
Totale projectbegroting | € 3.507.500 |
Tijdlijn
Startdatum | 1-3-2023 |
Einddatum | 31-8-2025 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- FARADAIC SENSORS GMBHpenvoerder
- FARADAIC SENSORS DOO BEOGRAD-VRCIN
Land(en)
Vergelijkbare projecten binnen EIC Accelerator
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
A new cardioprotective drug for acute treatment of myocardial infarctionResoTher aims to validate RTP-026, an immunomodulating therapy, to reduce heart damage and HF risk post-myocardial infarction through Phase II clinical studies. | EIC Accelerator | € 2.499.999 | 2024 | Details |
Clear, scalable and scientific framework to measure terrestrial biodiversity3Bee leverages IoT, wildlife monitoring, and satellite data to measure and regenerate biodiversity, generating certified Biodiversity Credits for corporations to enhance ESG reporting and brand value. | EIC Accelerator | € 2.252.714 | 2024 | Details |
Novel and Scalable microbial products for REgenerative agricultureN-Spire aims to revolutionize agriculture by creating a sustainable bioactive fertilizer through innovative manufacturing techniques, enhancing soil health and reducing chemical dependency. | EIC Accelerator | € 2.499.999 | 2024 | Details |
Quantum-based Randomness Processing Units (RPUs) for High-Performance Computation and Data SecurityQuside's Randomness Processing Unit (RPU) accelerates stochastic HPC and PQ cryptography by optimizing random workloads, enhancing efficiency and performance across various sectors. | EIC Accelerator | € 2.499.999 | 2024 | Details |
A new cardioprotective drug for acute treatment of myocardial infarction
ResoTher aims to validate RTP-026, an immunomodulating therapy, to reduce heart damage and HF risk post-myocardial infarction through Phase II clinical studies.
Clear, scalable and scientific framework to measure terrestrial biodiversity
3Bee leverages IoT, wildlife monitoring, and satellite data to measure and regenerate biodiversity, generating certified Biodiversity Credits for corporations to enhance ESG reporting and brand value.
Novel and Scalable microbial products for REgenerative agriculture
N-Spire aims to revolutionize agriculture by creating a sustainable bioactive fertilizer through innovative manufacturing techniques, enhancing soil health and reducing chemical dependency.
Quantum-based Randomness Processing Units (RPUs) for High-Performance Computation and Data Security
Quside's Randomness Processing Unit (RPU) accelerates stochastic HPC and PQ cryptography by optimizing random workloads, enhancing efficiency and performance across various sectors.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Miniature Trace Gas Analyzers with FFP microcavitiesThe project aims to develop and commercialize hand-held gas analyzers using Fiber Fabry-Perot microcavity technology for efficient methane detection and emission measurements. | ERC POC | € 150.000 | 2023 | Details |
POLARSENSE: Polaritonic compact gas sensor demonstratorPOLARSENSE aims to develop a compact, CMOS-compatible optical gas sensor chip using a graphene platform for high-sensitivity detection of multiple gases in portable devices. | ERC POC | € 150.000 | 2023 | Details |
UNIVERSAL SENSOR BASED ON ELECTRICALLY-PUMPED MID-INFRARED SPECTROMETER ON SILICON CHIPSUNISON aims to develop a compact, high-performance mid-IR spectroscopy platform for detecting greenhouse and toxic gases, enabling widespread use in IoT applications. | EIC Pathfinder | € 2.998.045 | 2024 | Details |
Micro-Scale Photonic Trace Gas SensorThe sCENT project aims to advance a groundbreaking chip-scale sensor for ppb-level trace gas detection, enhancing environmental monitoring and commercial viability through prototype development and real-life applications. | ERC POC | € 150.000 | 2024 | Details |
Miniature Trace Gas Analyzers with FFP microcavities
The project aims to develop and commercialize hand-held gas analyzers using Fiber Fabry-Perot microcavity technology for efficient methane detection and emission measurements.
POLARSENSE: Polaritonic compact gas sensor demonstrator
POLARSENSE aims to develop a compact, CMOS-compatible optical gas sensor chip using a graphene platform for high-sensitivity detection of multiple gases in portable devices.
UNIVERSAL SENSOR BASED ON ELECTRICALLY-PUMPED MID-INFRARED SPECTROMETER ON SILICON CHIPS
UNISON aims to develop a compact, high-performance mid-IR spectroscopy platform for detecting greenhouse and toxic gases, enabling widespread use in IoT applications.
Micro-Scale Photonic Trace Gas Sensor
The sCENT project aims to advance a groundbreaking chip-scale sensor for ppb-level trace gas detection, enhancing environmental monitoring and commercial viability through prototype development and real-life applications.