LEARN: Learning Efficient Automated Reasoning on the Net
LEARN automates reasoning and proof strategies for software certification, providing a web-based framework to enhance safety and security in complex computer systems, reducing costs from software errors.
Projectdetails
Introduction
Certified computer systems are becoming the key in the increasingly complex decision-making activities of our modern society. Among others, provably correct/secure solutions within Artificial Intelligence (AI), Autonomous Systems, Big Data, Blockchain, Decentralized Finance (DeFi), Cloud Computing, or Machine Learning (ML) are indispensable in the ongoing digitalization of our society.
The Paradox of Computer Systems
While the explosion in applications of computer systems leads to great increases in productivity, wealth, and convenience, it creates a paradoxical situation: we rely on computer systems despite the fact that countless application scenarios showcase that computer systems are not (properly) certified and hence are error-prone.
The Impact of Software Errors
Unfortunately, a single software error can quickly escalate into a big issue with huge economic damage. Software errors could be prevented by rigorous code reviews in the software logic. However, who can tell software developers which logical formalism should be used?
Certification Mechanisms
Moreover, which certification mechanism is best to be used during code review for ensuring system safety and security?
LEARN's Solution
LEARN answers these questions by automating reasoning about software and discovering proof strategies for software certification.
Features of LEARN
- Introduces a web-based framework for learning and predicting logic models of software properties.
- Discovers collections of proof strategies without relying on a server back-end, by automating inductive reasoning over commonly used software data structures.
Cost Reduction
LEARN eliminates massive costs arising from correcting defective software releases by proving an easy-to-deploy certification platform for developers and organizations.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-4-2025 |
Einddatum | 30-9-2026 |
Subsidiejaar | 2025 |
Partners & Locaties
Projectpartners
- TECHNISCHE UNIVERSITAET WIENpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
ELVER-CHECK: Well-grounded Lightweight Assurance for Critical Systems SoftwareELVER-CHECK aims to enhance the security assurance of critical systems software by developing lightweight executable checkers based on mathematical models of hardware features, targeting hypervisors like pKVM. | ERC Proof of... | € 150.000 | 2024 | Details |
Automated Synthesis of Certifiable Control Software for Autonomous VehiclesCertiCar aims to develop a reliable, formally correct advanced collision avoidance system to enhance safety and reduce testing time for autonomous vehicle control software. | ERC Proof of... | € 150.000 | 2024 | Details |
Compositional Higher-Order Reasoning about Distributed SystemsCHORDS aims to develop new theories and methods for compositional verification of distributed systems to enhance software correctness and security through rigorous mathematical reasoning. | ERC Advanced... | € 2.470.023 | 2023 | Details |
Intelligence-Oriented Verification&Controller SynthesisInOVation&CS aims to enhance the scalability and reliability of controller synthesis through AI/ML-driven verification methods, focusing on explainability and structured problem-solving. | ERC Consolid... | € 1.995.000 | 2025 | Details |
Verifiably Safe and Correct Deep Neural NetworksThis project aims to develop scalable verification techniques for large deep neural networks to ensure their safety and correctness in critical systems, enhancing reliability and societal benefits. | ERC Starting... | € 1.500.000 | 2023 | Details |
ELVER-CHECK: Well-grounded Lightweight Assurance for Critical Systems Software
ELVER-CHECK aims to enhance the security assurance of critical systems software by developing lightweight executable checkers based on mathematical models of hardware features, targeting hypervisors like pKVM.
Automated Synthesis of Certifiable Control Software for Autonomous Vehicles
CertiCar aims to develop a reliable, formally correct advanced collision avoidance system to enhance safety and reduce testing time for autonomous vehicle control software.
Compositional Higher-Order Reasoning about Distributed Systems
CHORDS aims to develop new theories and methods for compositional verification of distributed systems to enhance software correctness and security through rigorous mathematical reasoning.
Intelligence-Oriented Verification&Controller Synthesis
InOVation&CS aims to enhance the scalability and reliability of controller synthesis through AI/ML-driven verification methods, focusing on explainability and structured problem-solving.
Verifiably Safe and Correct Deep Neural Networks
This project aims to develop scalable verification techniques for large deep neural networks to ensure their safety and correctness in critical systems, enhancing reliability and societal benefits.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
LiveCertificatenLiveCertificaten biedt een blockchain-gebaseerd systeem voor het verifiëren van certificaten en het aantonen van kennis in digitale educatie. | Mkb-innovati... | € 20.000 | 2021 | Details |
Haalbaarheidsonderzoek naar AIPerLearn (AI-Powered Personalized Learning)STARK Learning onderzoekt de toepassing en training van AI-modellen om het ontwikkelen van gepersonaliseerde lesmaterialen te automatiseren en de kwaliteit en validatie te waarborgen. | Mkb-innovati... | € 20.000 | 2023 | Details |
Academic Language Checker (ALC)Het project onderzoekt de haalbaarheid van een slimme Academic Language Checker om academische schrijfproblemen van studenten met taalbeheersingsproblemen te identificeren en te verhelpen. | Mkb-innovati... | € 20.000 | 2021 | Details |
InContract AIHet project onderzoekt de inzet van digital twins en AI voor het automatiseren van contracten binnen de InContract-tool. | Mkb-innovati... | € 20.000 | 2023 | Details |
Context aware learning systemAIROC onderzoekt de haalbaarheid van een AI-gestuurd leerplatform dat bedrijven en onderwijs verbindt voor een gepersonaliseerde en interactieve leerervaring. | Mkb-innovati... | € 19.824 | 2020 | Details |
LiveCertificaten
LiveCertificaten biedt een blockchain-gebaseerd systeem voor het verifiëren van certificaten en het aantonen van kennis in digitale educatie.
Haalbaarheidsonderzoek naar AIPerLearn (AI-Powered Personalized Learning)
STARK Learning onderzoekt de toepassing en training van AI-modellen om het ontwikkelen van gepersonaliseerde lesmaterialen te automatiseren en de kwaliteit en validatie te waarborgen.
Academic Language Checker (ALC)
Het project onderzoekt de haalbaarheid van een slimme Academic Language Checker om academische schrijfproblemen van studenten met taalbeheersingsproblemen te identificeren en te verhelpen.
InContract AI
Het project onderzoekt de inzet van digital twins en AI voor het automatiseren van contracten binnen de InContract-tool.
Context aware learning system
AIROC onderzoekt de haalbaarheid van een AI-gestuurd leerplatform dat bedrijven en onderwijs verbindt voor een gepersonaliseerde en interactieve leerervaring.