LEARN: Learning Efficient Automated Reasoning on the Net

LEARN automates reasoning and proof strategies for software certification, providing a web-based framework to enhance safety and security in complex computer systems, reducing costs from software errors.

Subsidie
€ 150.000
2025

Projectdetails

Introduction

Certified computer systems are becoming the key in the increasingly complex decision-making activities of our modern society. Among others, provably correct/secure solutions within Artificial Intelligence (AI), Autonomous Systems, Big Data, Blockchain, Decentralized Finance (DeFi), Cloud Computing, or Machine Learning (ML) are indispensable in the ongoing digitalization of our society.

The Paradox of Computer Systems

While the explosion in applications of computer systems leads to great increases in productivity, wealth, and convenience, it creates a paradoxical situation: we rely on computer systems despite the fact that countless application scenarios showcase that computer systems are not (properly) certified and hence are error-prone.

The Impact of Software Errors

Unfortunately, a single software error can quickly escalate into a big issue with huge economic damage. Software errors could be prevented by rigorous code reviews in the software logic. However, who can tell software developers which logical formalism should be used?

Certification Mechanisms

Moreover, which certification mechanism is best to be used during code review for ensuring system safety and security?

LEARN's Solution

LEARN answers these questions by automating reasoning about software and discovering proof strategies for software certification.

Features of LEARN

  • Introduces a web-based framework for learning and predicting logic models of software properties.
  • Discovers collections of proof strategies without relying on a server back-end, by automating inductive reasoning over commonly used software data structures.

Cost Reduction

LEARN eliminates massive costs arising from correcting defective software releases by proving an easy-to-deploy certification platform for developers and organizations.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 150.000
Totale projectbegroting€ 150.000

Tijdlijn

Startdatum1-4-2025
Einddatum30-9-2026
Subsidiejaar2025

Partners & Locaties

Projectpartners

  • TECHNISCHE UNIVERSITAET WIENpenvoerder

Land(en)

Austria

Vergelijkbare projecten binnen European Research Council

ERC Proof of...

ELVER-CHECK: Well-grounded Lightweight Assurance for Critical Systems Software

ELVER-CHECK aims to enhance the security assurance of critical systems software by developing lightweight executable checkers based on mathematical models of hardware features, targeting hypervisors like pKVM.

€ 150.000
ERC Proof of...

Automated Synthesis of Certifiable Control Software for Autonomous Vehicles

CertiCar aims to develop a reliable, formally correct advanced collision avoidance system to enhance safety and reduce testing time for autonomous vehicle control software.

€ 150.000
ERC Advanced...

Compositional Higher-Order Reasoning about Distributed Systems

CHORDS aims to develop new theories and methods for compositional verification of distributed systems to enhance software correctness and security through rigorous mathematical reasoning.

€ 2.470.023
ERC Consolid...

Intelligence-Oriented Verification&Controller Synthesis

InOVation&CS aims to enhance the scalability and reliability of controller synthesis through AI/ML-driven verification methods, focusing on explainability and structured problem-solving.

€ 1.995.000
ERC Starting...

Verifiably Safe and Correct Deep Neural Networks

This project aims to develop scalable verification techniques for large deep neural networks to ensure their safety and correctness in critical systems, enhancing reliability and societal benefits.

€ 1.500.000

Vergelijkbare projecten uit andere regelingen

Mkb-innovati...

LiveCertificaten

LiveCertificaten biedt een blockchain-gebaseerd systeem voor het verifiëren van certificaten en het aantonen van kennis in digitale educatie.

€ 20.000
Mkb-innovati...

Haalbaarheidsonderzoek naar AIPerLearn (AI-Powered Personalized Learning)

STARK Learning onderzoekt de toepassing en training van AI-modellen om het ontwikkelen van gepersonaliseerde lesmaterialen te automatiseren en de kwaliteit en validatie te waarborgen.

€ 20.000
Mkb-innovati...

Academic Language Checker (ALC)

Het project onderzoekt de haalbaarheid van een slimme Academic Language Checker om academische schrijfproblemen van studenten met taalbeheersingsproblemen te identificeren en te verhelpen.

€ 20.000
Mkb-innovati...

InContract AI

Het project onderzoekt de inzet van digital twins en AI voor het automatiseren van contracten binnen de InContract-tool.

€ 20.000
Mkb-innovati...

Context aware learning system

AIROC onderzoekt de haalbaarheid van een AI-gestuurd leerplatform dat bedrijven en onderwijs verbindt voor een gepersonaliseerde en interactieve leerervaring.

€ 19.824