Automated Synthesis of Certifiable Control Software for Autonomous Vehicles

CertiCar aims to develop a reliable, formally correct advanced collision avoidance system to enhance safety and reduce testing time for autonomous vehicle control software.

Subsidie
€ 150.000
2024

Projectdetails

Introduction

Autonomous driving is a dominant technological theme of the 21st century, with vehicles from various car manufacturers equipped with different levels of autonomy. However, the implementation of safe and reliable control software remains a critical challenge for car manufacturers before fully autonomous vehicles become a reality.

Challenges in Current Systems

The current lack of reliability in autonomous vehicle software is mainly attributed to the absence of formal correctness. Design requirements are not expressed in a formal language, leading to ambiguity and false implementations.

Human Factors

Furthermore, human factors from engineers to developers increase the likelihood of errors, and testing scenarios are limited, leaving many edge cases untested. Immature control software leading to accidents undermines public trust in autonomous vehicles and impedes further development.

Proposed Solution

We propose leveraging our ongoing ERC project AutoCPS research to create robust, reliable, and formally correct automotive control software. CertiCar proposes a software development framework that automates control software generation and guarantees its robustness and reliability.

Importance of ACAS

A reliable advanced collision avoidance system (ACAS) is a fundamental requirement for future autonomous vehicles, significantly reducing the number of accidents, injuries, and fatalities.

Project Goals

CertiCar's PoC project aims to provide a correct-by-design ACAS with guaranteed correctness, reducing testing time by several orders of magnitude for car companies. This represents an initial step toward a complete software stack for a certifiable autonomous car.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 150.000
Totale projectbegroting€ 150.000

Tijdlijn

Startdatum1-2-2024
Einddatum31-7-2025
Subsidiejaar2024

Partners & Locaties

Projectpartners

  • LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHENpenvoerder

Land(en)

Germany

Vergelijkbare projecten binnen European Research Council

ERC STG

MANUNKIND: Determinants and Dynamics of Collaborative Exploitation

This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.

€ 1.497.749
ERC STG

Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure

The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.

€ 1.498.280
ERC STG

Uncovering the mechanisms of action of an antiviral bacterium

This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.

€ 1.500.000
ERC STG

The Ethics of Loneliness and Sociability

This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.

€ 1.025.860

Vergelijkbare projecten uit andere regelingen

ERC STG

SUrrogate measures for SAFE autonomous and connected mobility

SUperSAFE aims to develop a proactive safety evaluation method for the interaction between conventional and connected automated vehicles to enhance traffic safety and support European zero-fatality goals.

€ 1.500.000
ERC COG

Automated Synthesis of Stochastic Cyber-Physical Systems: A Robust Approach

This project aims to revolutionize the design of cyber-physical systems by automating robust control software synthesis from high-level requirements, enhancing reliability and reducing costs in safety-critical applications.

€ 1.993.756
ERC COG

Autonomous Robots with Common Sense

This project aims to develop an 'Artificial Physical Awareness' autopilot system for autonomous robots, enabling them to operate safely and effectively despite failures by understanding their limitations.

€ 1.996.040
EIC Accelerator

Fail-operational safety – making autonomous vehicles a reality

Chassis Autonomy aims to finalize a fail-operational steer-by-wire system for fully autonomous vehicles, enabling driverless technology and targeting market launch in two years.

€ 2.497.305