Inhibitors of ECF transporters as novel antibacterial agents
This project aims to develop novel antibacterial agents targeting ECF transporters in Gram-positive pathogens to combat antimicrobial resistance through a multidisciplinary approach.
Projectdetails
Introduction
Antimicrobial resistance is a global health threat, urgently calling for the development of novel anti-infective strategies. We will adopt a multidisciplinary approach to design, synthesize, and optimize derivatives targeting ECF transporters as antibacterial agents.
Background
The ECF transporters are transmembrane proteins involved in the uptake of vitamins predominantly in Gram-positive pathogens (e.g., Streptococcus pneumoniae, Enterococcus faecalis, E. faecium, Staphylococcus aureus). Their inhibition prevents the uptake of vitamins from the environment, leading to starvation followed by cell death.
Significance of ECF Transporters
Due to their critical role in the homeostasis of vitamins in bacteria as well as their absence in humans, ECF transporters are considered a promising novel antimicrobial target.
Methodology
We will thoroughly profile our inhibitors for their in vitro on-target and antibacterial activities.
- Further validate the cellular target through advanced target engagement studies.
- Attempt to achieve a co-crystal structure using cryo-electron microscopy.
- Evaluate the inhibitors for their in vitro ADME-T properties and in vivo pharmacokinetic profiles.
Future Directions
These evaluations will set the stage for in vivo infection models in mice. The extensive data that we will gather will enable us to nominate the most promising compound(s) for further multiparameter optimization en route to the nomination of a preclinical candidate.
Conclusion
Ultimately, this opens access to novel anti-infectives with an unprecedented mode of action.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-4-2024 |
Einddatum | 30-9-2025 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- HELMHOLTZ-ZENTRUM FUR INFEKTIONSFORSCHUNG GMBHpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Determining the mechanisms of lipid-targeting antibiotics in intact bacteriaThis project aims to elucidate the mechanisms of lipid-targeting antibiotics using advanced imaging and NMR techniques to combat antimicrobial resistance effectively. | ERC COG | € 2.000.000 | 2022 | Details |
Breaking resistance of pathogenic bacteria by chemical dysregulationThe project aims to combat antibiotic-resistant bacteria by developing innovative small molecules that dysregulate bacterial physiology through a three-tiered chemical strategy. | ERC ADG | € 2.499.785 | 2023 | Details |
Pharmaco-modulation of epithelia for induction of antimicrobial peptide expression: a disruptive approach to fight antibiotic resistanceMaxImmun aims to develop innovative molecules that enhance antimicrobial peptides to combat infections and antibiotic resistance, progressing towards clinical trials. | EIC Pathfinder | € 3.194.450 | 2024 | Details |
Antibiotics of the future: are they prone to bacterial resistance?This project aims to develop a forecasting framework for the long-term effectiveness of new antibiotics by studying bacterial resistance evolution and its implications for future antibiotic design and use. | ERC ADG | € 3.479.716 | 2024 | Details |
Determining the mechanisms of lipid-targeting antibiotics in intact bacteria
This project aims to elucidate the mechanisms of lipid-targeting antibiotics using advanced imaging and NMR techniques to combat antimicrobial resistance effectively.
Breaking resistance of pathogenic bacteria by chemical dysregulation
The project aims to combat antibiotic-resistant bacteria by developing innovative small molecules that dysregulate bacterial physiology through a three-tiered chemical strategy.
Pharmaco-modulation of epithelia for induction of antimicrobial peptide expression: a disruptive approach to fight antibiotic resistance
MaxImmun aims to develop innovative molecules that enhance antimicrobial peptides to combat infections and antibiotic resistance, progressing towards clinical trials.
Antibiotics of the future: are they prone to bacterial resistance?
This project aims to develop a forecasting framework for the long-term effectiveness of new antibiotics by studying bacterial resistance evolution and its implications for future antibiotic design and use.