Human blastoids: a drug discovery platform for women’s reproductive health
BLASTOID-DISCOVERY aims to utilize human blastoids as a scalable and ethical model for drug discovery to enhance women's reproductive health and reduce development costs.
Projectdetails
Introduction
The first weeks of human pregnancy are crucial as early abnormalities or insults result in infertility. Therapeutics acting at the onset of embryonic development would offer huge opportunities to improve public health through effective family planning and to reduce an ongoing global fertility decrease with profound economic, social, environmental, and geopolitical consequences.
Challenges in Drug Development
Unfortunately, a drug development program on human embryos is unfeasible due to the inaccessibility and scarcity of embryos, and to ethical issues associated with them. As a result, the attrition rate of drugs for reproductive health is high for all major In Vitro Fertilization (IVF) and pharmaceutical companies.
Alternative Approach
Recently, an alternative approach arose from stem cells self-organizing into structures closely resembling pre-implantation embryos (blastocysts), which we termed blastoids. Because stem cells can be largely multiplied, this embryo model provides a scalable and ethical alternative amenable to drug screens, thus opening numerous possibilities for therapeutic breakthroughs.
Proposal
Here, I propose to use human blastoids to discover molecules for women’s reproductive health.
Advantages of Blastoids
Blastoids offer a unique opportunity to establish a drug discovery program for early pregnancy and an alternative to the use of animal and human embryos. As such, this path has the potential to decrease the cost of drug development and to increase the rate of approved drugs for reproductive health.
Project Aim
The aim of BLASTOID-DISCOVERY is to investigate the commercial feasibility of using blastoids as a new and highly cost-effective tool in the discovery of therapeutics for reproductive health.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-11-2023 |
Einddatum | 30-4-2025 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- INSTITUT FUER MOLEKULARE BIOTECHNOLOGIE GMBHpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Representative, Reliable and Reproducible in vitro Models of the Human TestesThe project aims to develop a reliable preclinical model of human testes using tailored hydrogels to improve male infertility treatments through high-throughput experimentation and automated analysis. | ERC STG | € 1.499.980 | 2022 | Details |
Reprogramming of somatic cells into organOids: patient-centred neurodevelopmental disease modelling from nascent induced pluripotencyThe project aims to develop a robust method for generating human brain organoids from patients with Fragile X Syndrome to explore neurodevelopmental phenotypes and inform targeted therapies. | ERC ADG | € 2.500.000 | 2023 | Details |
Towards Artificial Human Embryoid Models: Engineered and Synthetic Platforms for Ex Utero Mammalian EmbryogenesisDevelop biotechnological platforms to culture mammalian embryos ex utero and create synthetic embryoids for advancing stem cell research and disease modeling. | ERC COG | € 2.000.000 | 2023 | Details |
Engineering the Origin of Human Shape: Defining Patterns and Axes in the Early Stage of 3D PluripotencyOriSha aims to revolutionize in vitro human embryonic development modeling by using a hydrogel-microfluidic system to control biochemical signals for studying neural tube morphogenesis. | ERC STG | € 1.499.633 | 2024 | Details |
Representative, Reliable and Reproducible in vitro Models of the Human Testes
The project aims to develop a reliable preclinical model of human testes using tailored hydrogels to improve male infertility treatments through high-throughput experimentation and automated analysis.
Reprogramming of somatic cells into organOids: patient-centred neurodevelopmental disease modelling from nascent induced pluripotency
The project aims to develop a robust method for generating human brain organoids from patients with Fragile X Syndrome to explore neurodevelopmental phenotypes and inform targeted therapies.
Towards Artificial Human Embryoid Models: Engineered and Synthetic Platforms for Ex Utero Mammalian Embryogenesis
Develop biotechnological platforms to culture mammalian embryos ex utero and create synthetic embryoids for advancing stem cell research and disease modeling.
Engineering the Origin of Human Shape: Defining Patterns and Axes in the Early Stage of 3D Pluripotency
OriSha aims to revolutionize in vitro human embryonic development modeling by using a hydrogel-microfluidic system to control biochemical signals for studying neural tube morphogenesis.