Towards Artificial Human Embryoid Models: Engineered and Synthetic Platforms for Ex Utero Mammalian Embryogenesis
Develop biotechnological platforms to culture mammalian embryos ex utero and create synthetic embryoids for advancing stem cell research and disease modeling.
Projectdetails
Introduction
Studying early human development is crucial for understanding embryonic defects and learning developmental principles that can be applied in the differentiation of human iPSCs into relevant cells for transplantation. Such research requires large numbers of human embryos; however, justified ethical barriers make this impossible.
Background
Since the mouse has been a “guiding compass” for all revolutionary technologies applied with human pluripotent stem cells, here we seek to develop biotechnologies in mice, rabbits, and non-human primates (NHP) that will likely enable, in the future, conceptually and technologically, circumventing this problem in humans.
Objectives
A two-pronged biotechnological platform development will be pursued:
- Engineering devices that enable ex utero culture of mammalian embryos from pre-implantation until complete organogenesis.
- Establishing platforms in which in vitro expanded stem cells can be coaxed to generate synthetic embryo-like structures (embryoids) that can self-organize and be grown in the latter developed ex utero embryogenesis devices, to yield structures with both embryonic and extra-embryonic compartments that capture advanced embryonic patterns.
Methodology
Motivated by our recently devised platform that allows natural mouse embryogenesis from post-implantation until organogenesis ex utero, we now aim to develop and validate biotechnological platforms that capture entire stages of development from pre-implantation until completion of organogenesis in natural mouse and rabbit embryos ex utero.
Future Directions
We will transform this knowledge to engineer advanced synthetic embryoids from in vitro expanded mouse, rabbit, and NHP stem cell populations. We will utilize in-house engineered devices, stem cell-based models, cutting-edge gene editing, microscopy, optogenetics, and single-cell biology.
Impact
Our work will establish novel platforms for generating advanced self-organizing embryoids ex utero that can be used for stem cell differentiation, drug screening, and disease modeling.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.000.000 |
Totale projectbegroting | € 2.000.000 |
Tijdlijn
Startdatum | 1-6-2023 |
Einddatum | 31-5-2028 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- WEIZMANN INSTITUTE OF SCIENCEpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Reprogramming of somatic cells into organOids: patient-centred neurodevelopmental disease modelling from nascent induced pluripotencyThe project aims to develop a robust method for generating human brain organoids from patients with Fragile X Syndrome to explore neurodevelopmental phenotypes and inform targeted therapies. | ERC ADG | € 2.500.000 | 2023 | Details |
Coordination of mouse embryogenesis in space and time at implantationThis project aims to investigate the coordination of developmental mechanisms in peri-implantation mouse embryos using advanced culture and imaging techniques to understand size regulation and morphogenesis. | ERC ADG | € 3.163.750 | 2023 | Details |
Human blastoids: a drug discovery platform for women’s reproductive healthBLASTOID-DISCOVERY aims to utilize human blastoids as a scalable and ethical model for drug discovery to enhance women's reproductive health and reduce development costs. | ERC POC | € 150.000 | 2023 | Details |
Engineering the Origin of Human Shape: Defining Patterns and Axes in the Early Stage of 3D PluripotencyOriSha aims to revolutionize in vitro human embryonic development modeling by using a hydrogel-microfluidic system to control biochemical signals for studying neural tube morphogenesis. | ERC STG | € 1.499.633 | 2024 | Details |
Reprogramming of somatic cells into organOids: patient-centred neurodevelopmental disease modelling from nascent induced pluripotency
The project aims to develop a robust method for generating human brain organoids from patients with Fragile X Syndrome to explore neurodevelopmental phenotypes and inform targeted therapies.
Coordination of mouse embryogenesis in space and time at implantation
This project aims to investigate the coordination of developmental mechanisms in peri-implantation mouse embryos using advanced culture and imaging techniques to understand size regulation and morphogenesis.
Human blastoids: a drug discovery platform for women’s reproductive health
BLASTOID-DISCOVERY aims to utilize human blastoids as a scalable and ethical model for drug discovery to enhance women's reproductive health and reduce development costs.
Engineering the Origin of Human Shape: Defining Patterns and Axes in the Early Stage of 3D Pluripotency
OriSha aims to revolutionize in vitro human embryonic development modeling by using a hydrogel-microfluidic system to control biochemical signals for studying neural tube morphogenesis.