Directed Orchestration of Microfluidic Environments for guided Self-organisation
The project develops the DOMES microfluidic platform to study environmental impacts on kidney organogenesis, enhancing understanding of congenital anomalies through advanced 3D cell culture models.
Projectdetails
Introduction
In Europe, 263 per 10,000 pregnancies are diagnosed with a fetal congenital anomaly. Congenital anomalies, also referred to as birth defects, are defined as structural or functional disorders that occur during fetal development and are inherited, and/or caused by environmental factors.
Environmental Factors
Unfortunately, the link between environmental factors, such as drugs, toxins, or other chemicals, and the manifestation of these multifactorial disorders is poorly understood. To identify environmental factors affecting tissue and organogenesis and study their pathogenic mechanisms, new 3D in vitro models with reliable and highly reproducible architecture are urgently needed.
Current Limitations
None of the current cell culture systems available can provide the controlled environment needed to sufficiently guide the self-organization process of stem cell-based 3D in vitro models.
The DOMES Platform
Our new microfluidic platform, DOMES, is the first of its kind, combining precise control over morphogenetic processes with standardized and user-friendly handling. In this project, we will exemplarily focus on congenital diseases of the kidney, in particular the collecting duct system.
Research Focus
We will analyze on-chip the impact of specific environmental compounds, such as drugs and endocrine disruptors, on the branching morphogenesis of the collecting duct.
Broader Applications
DOMES is a product family of microfluidic 3D cell culture chips which will allow the control and study not only of kidney organoids, but also of other 3D cell models including:
- Lung organoids
- Neural organoids
- Gut organoids
- Embryoid bodies
This is the first instance of a cell culture platform allowing direct orchestration of the microfluidic environment for guiding self-organization, symmetry breaking, and organogenesis. It represents a paradigm shift in researchers' ability to study the development of organs and their congenital anomalies in vitro.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-6-2022 |
Einddatum | 30-11-2023 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- UNIVERSITEIT MAASTRICHTpenvoerder
Land(en)
Geen landeninformatie beschikbaar
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Development of novel 3D vascularized cardiac models to investigate Coronary Microvascular DiseaseThe 3DVasCMD project aims to develop a 3D vascularized cardiac model using iPSC technology to study coronary microvascular disease and identify therapeutic targets for improved cardiovascular health. | ERC STG | € 1.496.395 | 2022 | Details |
Reprogramming of somatic cells into organOids: patient-centred neurodevelopmental disease modelling from nascent induced pluripotencyThe project aims to develop a robust method for generating human brain organoids from patients with Fragile X Syndrome to explore neurodevelopmental phenotypes and inform targeted therapies. | ERC ADG | € 2.500.000 | 2023 | Details |
Feedback-control of the Microenvironment: Modular Organ-on-Chip Technology to elucidate the role of Neurovascular Stress in SchizophreniaCHIPzophrenia aims to develop a feedback-controlled organ-on-chip system to study nitrosative stress effects on the blood-brain barrier, enhancing in-vitro research for schizophrenia and related disorders. | ERC STG | € 1.499.375 | 2024 | Details |
Engineering the Origin of Human Shape: Defining Patterns and Axes in the Early Stage of 3D PluripotencyOriSha aims to revolutionize in vitro human embryonic development modeling by using a hydrogel-microfluidic system to control biochemical signals for studying neural tube morphogenesis. | ERC STG | € 1.499.633 | 2024 | Details |
Development of novel 3D vascularized cardiac models to investigate Coronary Microvascular Disease
The 3DVasCMD project aims to develop a 3D vascularized cardiac model using iPSC technology to study coronary microvascular disease and identify therapeutic targets for improved cardiovascular health.
Reprogramming of somatic cells into organOids: patient-centred neurodevelopmental disease modelling from nascent induced pluripotency
The project aims to develop a robust method for generating human brain organoids from patients with Fragile X Syndrome to explore neurodevelopmental phenotypes and inform targeted therapies.
Feedback-control of the Microenvironment: Modular Organ-on-Chip Technology to elucidate the role of Neurovascular Stress in Schizophrenia
CHIPzophrenia aims to develop a feedback-controlled organ-on-chip system to study nitrosative stress effects on the blood-brain barrier, enhancing in-vitro research for schizophrenia and related disorders.
Engineering the Origin of Human Shape: Defining Patterns and Axes in the Early Stage of 3D Pluripotency
OriSha aims to revolutionize in vitro human embryonic development modeling by using a hydrogel-microfluidic system to control biochemical signals for studying neural tube morphogenesis.