COMMERCIALISATION OF A NOVEL PROTEIN VARIANT WITH NEURORESTORATIVE EFFECTS FOR AMYOTROPHIC LATERAL SCLEROSIS
REGENERA aims to evaluate the feasibility of the C-MANF peptide as a novel, accessible treatment for ALS, potentially improving patient outcomes and offering a new therapeutic avenue.
Projectdetails
Introduction
REGENERA will assess the technical and commercial feasibility of a novel and optimised C-MANF peptide as a superior treatment for amyotrophic lateral sclerosis (ALS). ALS is a fatal neurodegenerative disease affecting 450,000 people worldwide where motoneurons (MNs) selectively degenerate in the brain and spinal cord.
Disease Overview
ALS is characterised by muscle deterioration that rapidly leads to disability and culminates in death 3-5 years after diagnosis. Unfortunately, there is no cure for ALS and current treatments only marginally slow down its progression.
Limitations of Current Treatments
Moreover, promising neurotrophic factors (NTFs) with neuroprotective activity show insufficient efficiency, are unable to reach the brain tissue, and have highly invasive administration routes (i.e. brain injections and intrathecal) and high production costs. As a result, all NTFs clinical trials have failed.
Discovery of C-MANF
Ass. Prof. Voutilainen has discovered C-MANF, a novel peptide which, in contrast to classical NTFs:
- Has protective and restorative effects on motoneurons.
- Penetrates the blood-brain barrier (BBB).
- Can be subcutaneously administered.
- Can be inexpensively produced.
Project Objectives
Within REGENERA, we will assess whether C-MANF is feasible as an early-therapy option for ALS.
Research Phases
Firstly, we will analyse the pharmacokinetic properties and efficacy of C-MANF in ALS animal models and in human MNs.
Commercial Feasibility
Subsequently, commercial feasibility will be determined by:
- Verifying IP position and strategy.
- Performing in-depth market and competitor analyses.
- Consolidating these into a business case to establish the best path to commercialisation.
Potential Impact
Successful commercialisation of C-MANF could:
- Reduce the profound socioeconomic burden of ALS.
- Provide an early-therapy option to delay disease progression and thus extend and improve the patients’ lives.
- Provide the pharmaceutical industry with a novel therapeutic that can potentially be used for other neurodegenerative diseases.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-7-2022 |
Einddatum | 31-12-2023 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- HELSINGIN YLIOPISTOpenvoerder
Land(en)
Geen landeninformatie beschikbaar
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Advancing a vaccine targeting genetic amyotrophic lateral sclerosis (C9orf72 ALS) to the clinical stageDeveloping a poly-GA peptide vaccine to reduce protein aggregation and motor deficits in C9orf72 ALS, aiming for clinical evaluation and market entry through strategic partnerships. | EIC Transition | € 2.499.810 | 2022 | Details |
IMPROVING THE EFFECTIVENESS AND SAFETY OF EPIGENETIC EDITING IN BRAIN REGENERATIONREGENERAR aims to develop a non-viral delivery system to reprogram glial cells into neurons for treating CNS injuries, focusing on safety, targeting, and stakeholder collaboration. | EIC Pathfinder | € 2.943.233 | 2024 | Details |
Development of TW002 (AAV5--GDNF) for the Treatment of Amyotrophic Lateral SclerosisHet project onderzoekt de veiligheid en effectiviteit van de gentherapie TW002 voor ALS, met als doel de symptomen te verlichten en de levensduur en kwaliteit van leven van patiënten te verbeteren. | MIT R&D Samenwerking | € 200.000 | 2015 | Details |
Advancing a vaccine targeting genetic amyotrophic lateral sclerosis (C9orf72 ALS) to the clinical stage
Developing a poly-GA peptide vaccine to reduce protein aggregation and motor deficits in C9orf72 ALS, aiming for clinical evaluation and market entry through strategic partnerships.
IMPROVING THE EFFECTIVENESS AND SAFETY OF EPIGENETIC EDITING IN BRAIN REGENERATION
REGENERAR aims to develop a non-viral delivery system to reprogram glial cells into neurons for treating CNS injuries, focusing on safety, targeting, and stakeholder collaboration.
Development of TW002 (AAV5--GDNF) for the Treatment of Amyotrophic Lateral Sclerosis
Het project onderzoekt de veiligheid en effectiviteit van de gentherapie TW002 voor ALS, met als doel de symptomen te verlichten en de levensduur en kwaliteit van leven van patiënten te verbeteren.