SubsidieMeesters logoSubsidieMeesters
ProjectenRegelingenAnalyses

Advanced imaging system for Medical Applications

The i-TED project aims to demonstrate the applicability of a gamma-ray imaging system in intraoperative Radio-Guided Surgery and neutron dose assessment in boron-neutron capture therapy.

Subsidie
€ 150.000
2023

Projectdetails

Introduction

i-TED is a gamma-ray imaging system that was fully developed and successfully applied for nuclear astrophysics experiments at CERN n_TOF in the previous HYMNS ERC CoG.

System Characteristics

i-TED was designed for the highest possible detection sensitivity, and it is also characterized by its modularity, portability, and low sensitivity to neutron-induced backgrounds.

These characteristics make the developed system potentially very attractive for several emerging applications in health and life science.

Potential Applications

Indeed, Compton imagers are expected to provide a breakthrough innovation potential in the fields of:

  1. Ion-range monitoring in hadron therapy
  2. Intraoperative Radio-Guided Surgery (RGS)
  3. Dose-monitoring in boron-neutron capture therapy (BNCT)
  4. Theranostics (radioisotopes that serve for both therapy and diagnostics)

Project Aim

Thus, the aim of this POC proposal is to perform first proof-of-concept measurements with readily available i-TED Compton cameras for demonstrating their applicability and advantages in two of these fields:

  • Intraoperative RGS
  • Neutron dose assessment in BNCT

Technical Readiness Levels

We also aim at addressing the corresponding technical-readiness levels (TRLs) for each application, which seems the most convenient approach for an efficient transfer of the developed technology towards society.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 150.000
Totale projectbegroting€ 150.000

Tijdlijn

Startdatum1-11-2023
Einddatum31-12-2025
Subsidiejaar2023

Partners & Locaties

Projectpartners

  • AGENCIA ESTATAL CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICASpenvoerder
  • UNIVERSIDAD DE GRANADA
  • AIMPLAS - ASOCIACION DE INVESTIGACION DE MATERIALES PLASTICOS Y CONEXAS

Land(en)

Spain

Inhoudsopgave

European Research Council

Financiering tot €10 miljoen voor baanbrekend frontier-onderzoek via ERC-grants (Starting, Consolidator, Advanced, Synergy, Proof of Concept).

Bekijk regeling

Vergelijkbare projecten binnen European Research Council

ProjectRegelingBedragJaarActie

Prompt Gamma Time Imaging: a new medical-imaging modality for adaptive Particle Therapy

The project aims to enhance particle therapy efficacy and safety by developing Prompt Gamma Time Imaging for real-time monitoring of treatment, improving dose control and adaptive dosimetry.

ERC Starting...€ 1.498.969
2022
Details

3D silicon detector for imaging of diagnostic and therapeutic nuclear medicine radiotracers with outstanding efficiency and high spatial resolution.

This project aims to develop a novel molecular imaging instrument using advanced silicon sensors to enhance efficiency and resolution, potentially revolutionizing medical imaging and related research fields.

ERC Advanced...€ 3.351.875
2024
Details

Gamma-Neutron Vision aimed at improved cancer treatments in Hadron Therapy

This project aims to develop a portable device for simultaneous gamma-ray and thermal neutron imaging to enhance ion-range verification and secondary neutron dose assessment in proton therapy.

ERC Proof of...€ 150.000
2024
Details

Open Geometry PET, with 150ps TOF Resolution, for Real Time Molecular Imaging

Open-IMAGING aims to create a flexible Open Imaging System using advanced PET technology for high-resolution imaging, enabling safer interventions and improved patient monitoring.

ERC Proof of...€ 150.000
2022
Details

Towards pediatric molecular imaging: development of a low-dose and high-performance Total Body PET scanner

Developing the PHOENIX total body PET scanner aims to enhance pediatric imaging by achieving high sensitivity and spatial resolution while ensuring patient safety and comfort.

ERC Starting...€ 1.464.841
2024
Details
ERC Starting...

Prompt Gamma Time Imaging: a new medical-imaging modality for adaptive Particle Therapy

The project aims to enhance particle therapy efficacy and safety by developing Prompt Gamma Time Imaging for real-time monitoring of treatment, improving dose control and adaptive dosimetry.

ERC Starting Grant
€ 1.498.969
2022
Details
ERC Advanced...

3D silicon detector for imaging of diagnostic and therapeutic nuclear medicine radiotracers with outstanding efficiency and high spatial resolution.

This project aims to develop a novel molecular imaging instrument using advanced silicon sensors to enhance efficiency and resolution, potentially revolutionizing medical imaging and related research fields.

ERC Advanced Grant
€ 3.351.875
2024
Details
ERC Proof of...

Gamma-Neutron Vision aimed at improved cancer treatments in Hadron Therapy

This project aims to develop a portable device for simultaneous gamma-ray and thermal neutron imaging to enhance ion-range verification and secondary neutron dose assessment in proton therapy.

ERC Proof of Concept
€ 150.000
2024
Details
ERC Proof of...

Open Geometry PET, with 150ps TOF Resolution, for Real Time Molecular Imaging

Open-IMAGING aims to create a flexible Open Imaging System using advanced PET technology for high-resolution imaging, enabling safer interventions and improved patient monitoring.

ERC Proof of Concept
€ 150.000
2022
Details
ERC Starting...

Towards pediatric molecular imaging: development of a low-dose and high-performance Total Body PET scanner

Developing the PHOENIX total body PET scanner aims to enhance pediatric imaging by achieving high sensitivity and spatial resolution while ensuring patient safety and comfort.

ERC Starting Grant
€ 1.464.841
2024
Details

Vergelijkbare projecten uit andere regelingen

ProjectRegelingBedragJaarActie

Non-ionizing Metabolic Imaging for predicting the effect of and guiding Therapeutic Interventions

MITI aims to develop advanced non-invasive metabolic imaging technology for early disease detection and therapy effectiveness assessment, improving patient outcomes and reducing healthcare costs.

EIC Transition€ 2.100.238
2022
Details

REAL TIME MOLECULAR IMAGER WITH UNSURPASSED RESOLUTION

RETIMAGER aims to revolutionize PET imaging by achieving ten-fold improvements in spatial and temporal resolution, enabling real-time, high-sensitivity imaging for personalized precision medicine.

EIC Pathfinder€ 3.126.347
2023
Details

Next generation Limited-Angle time-of-flight PET imager

The PetVision project aims to develop a cost-effective, modular PET imaging device with enhanced sensitivity to improve cancer diagnostics accessibility across various medical settings.

EIC Pathfinder€ 3.374.041
2023
Details

Fast gated superconducting nanowire camera for multi-functional optical tomograph

This project aims to develop a multifunctional optical tomograph using an innovative light sensor to enhance deep body imaging and monitor organ functionality with 100x improved signal-to-noise ratio.

EIC Pathfinder€ 2.495.508
2023
Details

2D Material-Based Multiple Oncotherapy Against Metastatic Disease Using a Radically New Computed Tomography Approach

PERSEUS aims to develop a novel nanotechnology-based cancer therapy that activates under CT imaging to treat deep-seated, drug-resistant tumors with minimal side effects.

EIC Pathfinder€ 2.740.675
2023
Details
EIC Transition

Non-ionizing Metabolic Imaging for predicting the effect of and guiding Therapeutic Interventions

MITI aims to develop advanced non-invasive metabolic imaging technology for early disease detection and therapy effectiveness assessment, improving patient outcomes and reducing healthcare costs.

EIC Transition
€ 2.100.238
2022
Details
EIC Pathfinder

REAL TIME MOLECULAR IMAGER WITH UNSURPASSED RESOLUTION

RETIMAGER aims to revolutionize PET imaging by achieving ten-fold improvements in spatial and temporal resolution, enabling real-time, high-sensitivity imaging for personalized precision medicine.

EIC Pathfinder
€ 3.126.347
2023
Details
EIC Pathfinder

Next generation Limited-Angle time-of-flight PET imager

The PetVision project aims to develop a cost-effective, modular PET imaging device with enhanced sensitivity to improve cancer diagnostics accessibility across various medical settings.

EIC Pathfinder
€ 3.374.041
2023
Details
EIC Pathfinder

Fast gated superconducting nanowire camera for multi-functional optical tomograph

This project aims to develop a multifunctional optical tomograph using an innovative light sensor to enhance deep body imaging and monitor organ functionality with 100x improved signal-to-noise ratio.

EIC Pathfinder
€ 2.495.508
2023
Details
EIC Pathfinder

2D Material-Based Multiple Oncotherapy Against Metastatic Disease Using a Radically New Computed Tomography Approach

PERSEUS aims to develop a novel nanotechnology-based cancer therapy that activates under CT imaging to treat deep-seated, drug-resistant tumors with minimal side effects.

EIC Pathfinder
€ 2.740.675
2023
Details

SubsidieMeesters logoSubsidieMeesters

Vind en verken subsidieprojecten in Nederland en Europa.

Links

  • Projecten
  • Regelingen
  • Analyses

Suggesties

Heb je ideeën voor nieuwe features of verbeteringen?

Deel je suggestie
© 2025 SubsidieMeesters. Alle rechten voorbehouden.