REAL TIME MOLECULAR IMAGER WITH UNSURPASSED RESOLUTION
RETIMAGER aims to revolutionize PET imaging by achieving ten-fold improvements in spatial and temporal resolution, enabling real-time, high-sensitivity imaging for personalized precision medicine.
Projectdetails
Introduction
Over the last decades, Positron Emission Tomography (PET) has been firmly established as the predominant molecular imaging technique due to its unmatched sensitivity and capability to address many different metabolic processes. However, there is huge room for improvement, as current clinical PET scanners are limited to spatial resolutions higher than 2.5 mm and temporal resolutions longer than 5 seconds.
Limitations of Current PET Scanners
This hampers applications of PET for preclinical research and clinical diagnosis in small tissues or lesions and precludes real-time reconstruction of metabolic images.
Project Overview
RETIMAGER is a proposal for a molecular imaging system with a ten-fold spatial and temporal improvement on the reconstructed image with respect to current PET devices. This will not only boost the quantitative performance, but it will enable new applications in:
- Cardiology
- Vascular oncology
- Oncology
- Neurology
- Other areas
Technological Advancements
We will achieve this milestone by developing smart radiation detectors with non-conventional geometries that combine the advantages of both pixelated and monolithic detectors, the two dominant and seemingly incompatible technologies employed in PET scanners.
Features of RETIMAGER
Our new scanner will provide:
- 0.25 mm pixel resolvability
- Time frames as short as 0.01 sec
By aggregating these blocks in a unique gantry self-adapting to the geometry of the field-of-view, RETIMAGER will achieve an unprecedented increase in sensitivity and in vivo real-time imaging with submillimeter resolution.
Data Processing and AI Integration
We will pair it with high-throughput data processing and AI tools to assess with a single tracer both perfusion and metabolism in preclinical and clinical models.
Long-term Impact
In the long run, RETIMAGER's faster, lower dose, and less invasive molecular imaging technology will become a game-changer for understanding disease processes by unveiling new accurate image-based quantitative biomarkers, taking scientific and healthcare stakeholders a step closer to personalized precision medicine.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 3.126.347 |
Totale projectbegroting | € 3.126.347 |
Tijdlijn
Startdatum | 1-9-2023 |
Einddatum | 28-2-2027 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- UNIVERSIDAD CARLOS III DE MADRIDpenvoerder
- UNIVERSIDAD COMPLUTENSE DE MADRID
- FORSCHUNGSZENTRUM JULICH GMBH
- INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE
- WEEROC
- INSPIRALIA SOCIEDAD LIMITADA
Land(en)
Vergelijkbare projecten binnen EIC Pathfinder
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
"Creation of innovative ""humidity to electricity"" renewable energy conversion technology towards sustainable energy challenge"The CATCHER project aims to develop scalable technology for converting atmospheric humidity into renewable electricity, enhancing EU leadership in clean energy innovation. | EIC Pathfinder | € 2.996.550 | 2022 | Details |
Quantitative Ultrasound Stochastic Tomography - Revolutionizing breast cancer diagnosis and screening with supercomputing-based radiation-free imaging.The project aims to revolutionize breast cancer imaging by developing adjoint-based algorithms for uncertainty quantification, enhancing diagnostic confidence through high-resolution, radiation-free images. | EIC Pathfinder | € 2.744.300 | 2022 | Details |
Dynamic Spatio-Temporal Modulation of Light by Phononic ArchitecturesDynamo aims to revolutionize imaging technologies by enabling simultaneous light modulation at GHz rates, enhancing processing speed and positioning Europe as a leader in optical advancements. | EIC Pathfinder | € 2.552.277 | 2022 | Details |
Emerging technologies for crystal-based gamma-ray light sourcesTECHNO-CLS aims to develop novel gamma-ray light sources using oriented crystals and high-energy particle beams, enhancing applications in various scientific fields through innovative technology. | EIC Pathfinder | € 2.643.187 | 2022 | Details |
"Creation of innovative ""humidity to electricity"" renewable energy conversion technology towards sustainable energy challenge"
The CATCHER project aims to develop scalable technology for converting atmospheric humidity into renewable electricity, enhancing EU leadership in clean energy innovation.
Quantitative Ultrasound Stochastic Tomography - Revolutionizing breast cancer diagnosis and screening with supercomputing-based radiation-free imaging.
The project aims to revolutionize breast cancer imaging by developing adjoint-based algorithms for uncertainty quantification, enhancing diagnostic confidence through high-resolution, radiation-free images.
Dynamic Spatio-Temporal Modulation of Light by Phononic Architectures
Dynamo aims to revolutionize imaging technologies by enabling simultaneous light modulation at GHz rates, enhancing processing speed and positioning Europe as a leader in optical advancements.
Emerging technologies for crystal-based gamma-ray light sources
TECHNO-CLS aims to develop novel gamma-ray light sources using oriented crystals and high-energy particle beams, enhancing applications in various scientific fields through innovative technology.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Open Geometry PET, with 150ps TOF Resolution, for Real Time Molecular ImagingOpen-IMAGING aims to create a flexible Open Imaging System using advanced PET technology for high-resolution imaging, enabling safer interventions and improved patient monitoring. | ERC POC | € 150.000 | 2022 | Details |
Cherenkov light for total-body Positron Emission TomographyThe project aims to develop a cost-effective, high-performance PET scanner using Cherenkov photon detection to enhance early cancer diagnosis and treatment monitoring. | ERC POC | € 150.000 | 2023 | Details |
In vivo Immunofluorescence-Optical Coherence TomographyDevelop a high-resolution endoscopic imaging system combining Optical Coherence Tomography and fluorescent antibodies for improved diagnosis and treatment of esophageal cancer and lung disease. | ERC ADG | € 2.500.000 | 2025 | Details |
3D silicon detector for imaging of diagnostic and therapeutic nuclear medicine radiotracers with outstanding efficiency and high spatial resolution.This project aims to develop a novel molecular imaging instrument using advanced silicon sensors to enhance efficiency and resolution, potentially revolutionizing medical imaging and related research fields. | ERC ADG | € 3.351.875 | 2024 | Details |
Open Geometry PET, with 150ps TOF Resolution, for Real Time Molecular Imaging
Open-IMAGING aims to create a flexible Open Imaging System using advanced PET technology for high-resolution imaging, enabling safer interventions and improved patient monitoring.
Cherenkov light for total-body Positron Emission Tomography
The project aims to develop a cost-effective, high-performance PET scanner using Cherenkov photon detection to enhance early cancer diagnosis and treatment monitoring.
In vivo Immunofluorescence-Optical Coherence Tomography
Develop a high-resolution endoscopic imaging system combining Optical Coherence Tomography and fluorescent antibodies for improved diagnosis and treatment of esophageal cancer and lung disease.
3D silicon detector for imaging of diagnostic and therapeutic nuclear medicine radiotracers with outstanding efficiency and high spatial resolution.
This project aims to develop a novel molecular imaging instrument using advanced silicon sensors to enhance efficiency and resolution, potentially revolutionizing medical imaging and related research fields.