Triboelectric energy generators for self-powered medical implants
TriboMed aims to develop a self-powered, integrated energy harvesting device using triboelectric generators for active implantable medical devices, enhancing patient outcomes and reducing surgical interventions.
Projectdetails
Introduction
Based on intense research efforts in the fields of technology development and materials science, a new generation of medical devices has flourished. But this medical technology still relies on conventional energy sources (bulky batteries). These batteries typically have shorter lifetimes than the implant itself, meaning limitations on patients' activities, infections, and additional surgeries.
Ideal Scenario
In an ideal scenario, active implantable medical devices (AIMDs) would be powered using integrated and fully implantable energy suppliers, not needing to be recharged or replaced. An integrated implantable energy harvesting device to power AIMDs is the crucial missing component that would unlock this future.
Project Overview
TriboMed aims to implement triboelectric energy generators (TENGs) for powering AIMDs, taking vagus nerve stimulation (VNS) as proof-of-concept. I will show that TENGs can be produced at a larger scale, while being miniaturized and tuned, supplying energy levels suitable for driving stimulation implants.
Development Goals
By coupling to a supercapacitor, I aim to develop a fully integrated energy-autonomous VNS implant on a conformable and biocompatible substrate. My approach is timely and innovative because it responds to the increasing needs of energy harvesting and comes when the maturity level reached by thin films technologies allows us to start working on device integration.
Background and Expertise
My background in materials science and my current experience in device technology provide me with the tools necessary for the successful development of TriboMed. I have the privilege to be working at the forefront of biomedical research, affording insight into the latest achievements and emerging requirements of VNS technology.
Future Impact
TriboMed will unlock the use of triboelectricity for feeding other AIMDs and beyond, on the Internet of Things. Turning the medical implants into self-powered systems will broaden the acceptance of neuromodulation therapies, with a life-changing impact on a very large patient population.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.998.273 |
Totale projectbegroting | € 1.998.273 |
Tijdlijn
Startdatum | 1-9-2024 |
Einddatum | 31-8-2029 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- FUNDACIO INSTITUT CATALA DE NANOCIENCIA I NANOTECNOLOGIApenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Biointegrable soft actuators alimented by metabolic energyINTEGRATE aims to revolutionize implantable devices by using metabolic energy to power 3D-printed soft actuating materials and an energy-harvesting organ, enhancing autonomy and efficiency. | EIC Pathfinder | € 1.698.750 | 2022 | Details |
Powering wearable devices by human heat with highly efficient, flexible, bio-inspired generatorsPOWERbyU aims to develop high-efficiency, flexible thermoelectric generators using innovative materials and designs to enable self-powered wearable devices and other applications. | ERC ADG | € 2.499.266 | 2022 | Details |
Novel bio-inspired energy harvesting and storage all-in-one platform for implantable devices based on peptide nanotechnologyDeveloping PepZoPower, a biocompatible energy harvesting and storage device using piezoelectric peptides, to create autonomous, miniaturized power sources for implantable biomedical systems. | ERC POC | € 150.000 | 2022 | Details |
Biodegradable MEMS implants for nerve repairDevelop biodegradable MEMS implants for nerve repair using innovative mechanical stimulation strategies to enhance neural regeneration post-injury. | ERC STG | € 1.672.968 | 2023 | Details |
Biointegrable soft actuators alimented by metabolic energy
INTEGRATE aims to revolutionize implantable devices by using metabolic energy to power 3D-printed soft actuating materials and an energy-harvesting organ, enhancing autonomy and efficiency.
Powering wearable devices by human heat with highly efficient, flexible, bio-inspired generators
POWERbyU aims to develop high-efficiency, flexible thermoelectric generators using innovative materials and designs to enable self-powered wearable devices and other applications.
Novel bio-inspired energy harvesting and storage all-in-one platform for implantable devices based on peptide nanotechnology
Developing PepZoPower, a biocompatible energy harvesting and storage device using piezoelectric peptides, to create autonomous, miniaturized power sources for implantable biomedical systems.
Biodegradable MEMS implants for nerve repair
Develop biodegradable MEMS implants for nerve repair using innovative mechanical stimulation strategies to enhance neural regeneration post-injury.