Superconducting Parametric Amplifier Receiver Technology for Astronomy and Fundamental Physics Experiments
This project aims to develop ultra-broadband superconducting parametric amplifiers and frequency converters to revolutionize mm/sub-mm/THz instrumentation across various scientific and technological fields.
Projectdetails
Introduction
The emerging technology of superconducting parametric amplifiers (SPAs) can achieve quantum-limited sensitivity over a broad bandwidth by utilizing the wave-mixing mechanism in a nonlinear transmission medium. They are compact, easy to fabricate with planar circuit technology, have ultra-low heat dissipation, and can be integrated directly with other detector circuits.
Performance and Applications
Their performance surpasses that of the state-of-the-art high electron mobility transistor (HEMT) amplifiers, and they can operate from radio to THz frequencies. Therefore, they have the potential to revolutionize almost every kind of microwave, millimetre (mm), and sub-mm instrumentation, from observational astronomy to fundamental physics experiments such as dark matter searches, quantum information platforms, and neutrino mass determination.
Objectives
In this proposal, I will:
- Develop practical ultra-broadband quantum amplifiers for deployment to mm/sub-mm/THz astronomical receivers and fundamental physics experiments.
- Develop novel ultra-compact parametric frequency converters to replace traditional superconductor-insulator-superconductor (SIS) mixers and Schottky local oscillator (LO) technologies, enabling the construction of large pixel-count systems for mm-wave heterodyne receivers such as the Atacama Large Millimetre/sub-mm Array (ALMA) and Event Horizon Telescopes (EHT).
- Explore high critical temperature superconductors to extend the operation of these parametric devices into higher bath temperatures and frequencies in the supra-THz regime, potentially replacing hot electron bolometer (HEB) mixers and quantum cascade lasers (QCLs).
Impact
The successful delivery of these outcomes marks a paradigm shift in mm/sub-mm/THz instrumentation, replacing all the core technologies used in this regime with a single integratable SPA technology. This will also have a significant impact on many other fields such as telecommunications, medical applications, and remote sensing, among others.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.999.974 |
Totale projectbegroting | € 2.999.974 |
Tijdlijn
Startdatum | 1-4-2025 |
Einddatum | 31-3-2030 |
Subsidiejaar | 2025 |
Partners & Locaties
Projectpartners
- THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORDpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Developing an inductive spectrometer for electron paramagnetic resonance detection and imaging at the micron scale using superconducting quantum circuits.Develop a high-sensitivity quantum-circuit EPR spectrometer to detect and image paramagnetic species in micron-sized samples, enabling new research in biology and chemistry. | ERC STG | € 1.992.500 | 2022 | Details |
Phase-sensitive Alteration of Light colorAtioN in quadri-parTIte gaRnet cavItyPALANTIRI aims to develop an efficient on-chip analog coherent frequency converter to enhance internet connectivity and enable a quantum-ready infrastructure using advanced hybridization techniques. | EIC Pathfinder | € 3.303.533 | 2022 | Details |
New superconducting quantum-electric device concept utilizing increased anharmonicity, simple structure, and insensitivity to charge and flux noiseConceptQ aims to develop a novel superconducting qubit with high fidelity and power efficiency, enhancing quantum computing and enabling breakthroughs in various scientific applications. | ERC ADG | € 2.498.759 | 2022 | Details |
Strong light-matter coupled ultra-fast and non-linear quantum semiconductor devicesSMART-QDEV aims to innovate mid-IR technologies by leveraging strong light-matter coupling in semiconductor heterostructures to develop ultra-fast, non-linear quantum devices. | ERC ADG | € 2.496.206 | 2024 | Details |
Developing an inductive spectrometer for electron paramagnetic resonance detection and imaging at the micron scale using superconducting quantum circuits.
Develop a high-sensitivity quantum-circuit EPR spectrometer to detect and image paramagnetic species in micron-sized samples, enabling new research in biology and chemistry.
Phase-sensitive Alteration of Light colorAtioN in quadri-parTIte gaRnet cavIty
PALANTIRI aims to develop an efficient on-chip analog coherent frequency converter to enhance internet connectivity and enable a quantum-ready infrastructure using advanced hybridization techniques.
New superconducting quantum-electric device concept utilizing increased anharmonicity, simple structure, and insensitivity to charge and flux noise
ConceptQ aims to develop a novel superconducting qubit with high fidelity and power efficiency, enhancing quantum computing and enabling breakthroughs in various scientific applications.
Strong light-matter coupled ultra-fast and non-linear quantum semiconductor devices
SMART-QDEV aims to innovate mid-IR technologies by leveraging strong light-matter coupling in semiconductor heterostructures to develop ultra-fast, non-linear quantum devices.