Regulation of Articular Cartilage Zonal Emergence: Harnessing Developmental Pathways to Enhance Regeneration
ReZone aims to uncover the mechanisms of zonal emergence in articular cartilage using a goat model to enhance regeneration and improve treatment for cartilage injuries.
Projectdetails
Introduction
Articular cartilage (AC) has a complex zonal structure and composition, providing it with its essential functional properties. However, when cartilage is damaged, the zonal complexity does not regenerate, leaving an inferior tissue which is prone to degeneration. As a result, cartilage injury commonly leads to pain and the eventual need for joint replacement.
Background
Progress towards true regeneration of AC requires an advance in understanding how zonal complexity (and corresponding function) emerge over development. The most promising clue to understanding zonal emergence is that mechanical forces are known to be important for normal AC development.
Project Overview
ReZone will reveal the mechanisms underlying zonal emergence through a novel goat model in which a common veterinary procedure is repurposed to create a radically altered mechanical environment in the developing joint.
Methodology
By comparing gene activity between normal and altered states of zonal emergence, I will identify pathways likely to be involved in zonal emergence. I will leverage my expertise in cartilage explant culture and mechanostimulation bioreactors to develop a novel in vitro explant model, and use this model to validate candidate pathways.
Therapeutic Potential
Finally, I will demonstrate the therapeutic potential of molecular regulators of zonal emergence using gene-activated biomaterials to regenerate zonal emergence in an in vivo, large-animal model of cartilage repair.
Expected Outcomes
ReZone will provide a step-change in our understanding of how zonal AC develops postnatally, including the role of mechanical loading. The project’s ambitious aim is to bring about enhanced regeneration of AC through activation of the developmental processes which form functional cartilage in early life.
Conclusion
Revealing key mechanisms underlying zonal emergence in immature AC will enable true regeneration of injured AC, improving quality of life for patients with articular cartilage defects worldwide.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.265.746 |
Totale projectbegroting | € 2.265.746 |
Tijdlijn
Startdatum | 1-6-2024 |
Einddatum | 31-5-2029 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- UNIVERSITY COLLEGE DUBLIN, NATIONAL UNIVERSITY OF IRELAND, DUBLINpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
ENGINEERING CELLULAR SELF‐ORGANISATION BY CONTROLLING THE IMMUNO-MECHANICAL INTERPLAYThis project aims to reduce scarring in bone regeneration by engineering synthetic immune-mechanical niches to enhance cell self-organization and matrix formation, improving healing outcomes. | ERC ADG | € 2.490.725 | 2023 | Details |
Rewiring gene regulatory circuits to enhance central nervous system repairThis project aims to rewire gene expression in mammalian neural stem cells using synthetic enhancers to promote regeneration after CNS injury, enhancing cell replacement and gene therapy strategies. | ERC STG | € 1.500.000 | 2023 | Details |
Restoring the structural collagen network in the regeneration of cartilageRe-COLL aims to develop durable implants for damaged joints by engineering anisotropic collagen networks through biofabrication and in vitro models, enhancing tissue regeneration and stability. | ERC ADG | € 2.500.000 | 2024 | Details |
Tight junctions and tissue mechanics as sensors and executers of heart regenerationThis project aims to understand salamander regeneration by integrating gene editing, imaging, and mechanical analysis to explore tight junctions' role in cellular responses and regeneration control. | ERC STG | € 2.318.778 | 2025 | Details |
ENGINEERING CELLULAR SELF‐ORGANISATION BY CONTROLLING THE IMMUNO-MECHANICAL INTERPLAY
This project aims to reduce scarring in bone regeneration by engineering synthetic immune-mechanical niches to enhance cell self-organization and matrix formation, improving healing outcomes.
Rewiring gene regulatory circuits to enhance central nervous system repair
This project aims to rewire gene expression in mammalian neural stem cells using synthetic enhancers to promote regeneration after CNS injury, enhancing cell replacement and gene therapy strategies.
Restoring the structural collagen network in the regeneration of cartilage
Re-COLL aims to develop durable implants for damaged joints by engineering anisotropic collagen networks through biofabrication and in vitro models, enhancing tissue regeneration and stability.
Tight junctions and tissue mechanics as sensors and executers of heart regeneration
This project aims to understand salamander regeneration by integrating gene editing, imaging, and mechanical analysis to explore tight junctions' role in cellular responses and regeneration control.