Molecular mimicry as a key parameter shaping T cell immunity

The MIMIC project aims to explore molecular mimicry's role in T cell recognition to enhance cancer immunotherapy by optimizing antigen selection based on pre-existing immunity insights.

Subsidie
€ 2.000.000
2022

Projectdetails

Scientific Challenge

Immunotherapy has revolutionized cancer treatment, yet only a minor fraction of patients respond to frequently used immunotherapeutic treatments. T cell recognition of peptide-major histocompatibility (pMHC) class I complexes is essential to maintain immune surveillance and eliminate cancerous cells.

Numerous products of genetic and epigenetic alterations can serve as targets for T cell recognition of cancer, yet our capacity to predict what MHC-embedded targets T cells can recognize on the surface of cancer cells is still poor, with a less than 5% hit rate. While we have robust tools for prediction of antigen presentation, we still have very limited understanding of the factors driving immunogenicity, i.e., which of the presented targets will give rise to T cell recognition.

A fundamental mechanism influencing T cell recognition is molecular mimicry. It has long been proposed that the ability of a given T-cell receptor (TCR) to recognize multiple different pMHC complexes is essential to provide immunological coverage of all potential pathogens that we may encounter. T cell epitopes that at first glance appear very different may have structural similarities once embedded in the MHC I binding groove, and hence appear similar to the given TCR (molecular mimicry).

Objective

In MIMIC, I will determine the role of molecular mimicry in T cell recognition and demonstrate how pre-existing immunity may shape the T cell recognition of cancer antigens. I will use the SARS-CoV2 infection as a model system to understand molecular mimicry and apply the learnings from this to cancer immunogenicity.

Expected Outcome

I predict that by understanding the influence of molecular mimicry, the rules governing the immunogenicity of T cell epitopes can be determined and the selection of antigens optimized. This will be essential to develop precision T cell therapies targeting tumor antigens of relevance for the individual patient.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 2.000.000
Totale projectbegroting€ 2.000.000

Tijdlijn

Startdatum1-9-2022
Einddatum31-8-2027
Subsidiejaar2022

Partners & Locaties

Projectpartners

  • DANMARKS TEKNISKE UNIVERSITETpenvoerder

Land(en)

Denmark

Vergelijkbare projecten binnen European Research Council

ERC STG

MANUNKIND: Determinants and Dynamics of Collaborative Exploitation

This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.

€ 1.497.749
ERC STG

Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure

The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.

€ 1.498.280
ERC STG

Uncovering the mechanisms of action of an antiviral bacterium

This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.

€ 1.500.000
ERC STG

The Ethics of Loneliness and Sociability

This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.

€ 1.025.860

Vergelijkbare projecten uit andere regelingen

ERC STG

Polyclonal anti-tumor immunity by engineered human T cells

This project aims to enhance adoptive T cell therapies for solid tumors by engineering TCR sensitivity and safety, creating robust, antigen-agnostic immune responses to improve patient outcomes.

€ 1.812.500
ERC STG

Decoding Requirements for Infiltration of T ceLLs into solid tumors

This project aims to enhance T cell infiltration into pancreatic cancer by investigating chemokine regulation and T cell determinants, potentially improving immunotherapy efficacy.

€ 1.521.000
ERC ADG

An integrative genetic approach for the exploration of melanoma immunological interactions

This project aims to enhance cancer vaccine efficacy by systematically analyzing the immunopeptidome in melanoma to identify actionable neopeptides and their impact on immune responses.

€ 2.500.000
ERC ADG

Unraveling the Supramolecular Architecture of Molecular Machineries in Adaptive Immunity

This project aims to uncover the complex mechanisms of peptide-MHC I biogenesis and T cell recognition to enhance understanding of adaptive immunity and its role in human disease.

€ 2.499.938