Unraveling the Supramolecular Architecture of Molecular Machineries in Adaptive Immunity
This project aims to uncover the complex mechanisms of peptide-MHC I biogenesis and T cell recognition to enhance understanding of adaptive immunity and its role in human disease.
Projectdetails
Introduction
To combat daily threats of pathogens and abnormal cells, the human organism features a sophisticated defense mechanism called the adaptive immune system. In broad terms, this intricate mechanism is triggered by specific peptide epitopes presented on molecules of the major histocompatibility complex class I (MHC I), which are scanned by cytotoxic T cells.
Mechanisms Involved
Intracellular transport, loading, and cell-surface recognition of antigenic peptides on MHC I are orchestrated by machineries, including:
- The peptide-loading complex (PLC)
- The T cell receptor (TCR) complex
The PLC is composed of multiple subunits, including the antigen translocation unit TAP, the MHC I heterodimer, and several chaperones ensuring that only stable peptide-MHC I molecules are released to the cell surface for decoding by TCR complexes.
Signaling and Hypothesis
Ligand binding and the supramolecular organization of TCR complexes are translated into phosphorylation of conserved tyrosine-containing cytosolic sequence motifs that initiate downstream signaling cascades. Based on their incredible efficiency and selectivity, we hypothesize that:
- The biogenesis of MHC I is highly processive and coupled via allosteric networking.
- Antigen processing and recognition machineries are compartmentalized by a defined supramolecular organization.
Challenges in Understanding
However, despite their fundamental importance, these architectural details of the PLC and the TCR, as well as the dynamic networking included in the quality control of the endoplasmic reticulum (ER) and receptor signaling processes, remain enigmatic due to their inherent dynamics, low abundance, and complexity.
Project Goals
This ambitious proposal will contribute to a long-awaited holistic understanding of the machineries that shape the vertebrate adaptive immunity. The expected findings from this project will be groundbreaking in understanding the hidden processes of epitope selection and reception in human disease.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.499.938 |
Totale projectbegroting | € 2.499.938 |
Tijdlijn
Startdatum | 1-1-2025 |
Einddatum | 31-12-2029 |
Subsidiejaar | 2025 |
Partners & Locaties
Projectpartners
- JOHANN WOLFGANG GOETHE-UNIVERSITAET FRANKFURT AM MAINpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Intrinsic autophagy receptors: identity and cellular mechanisms.This project aims to uncover the role of intrinsic receptors in the selective autophagy of macromolecular complexes, enhancing our understanding of cellular quality control and aging-related diseases. | ERC STG | € 1.495.000 | 2022 | Details |
Molecular mimicry as a key parameter shaping T cell immunityThe MIMIC project aims to explore molecular mimicry's role in T cell recognition to enhance cancer immunotherapy by optimizing antigen selection based on pre-existing immunity insights. | ERC COG | € 2.000.000 | 2022 | Details |
Mechanisms of co-translational assembly of multi-protein complexesThis project aims to uncover the mechanisms of co-translational protein complex assembly using advanced techniques to enhance understanding of protein biogenesis and its implications for health and disease. | ERC SyG | € 9.458.525 | 2023 | Details |
Learning the interaction rules of antibody-antigen bindingThis project aims to enhance antibody-antigen binding prediction by generating large-scale sequence and structural data through high-throughput screening and machine learning techniques. | ERC COG | € 2.000.000 | 2024 | Details |
Intrinsic autophagy receptors: identity and cellular mechanisms.
This project aims to uncover the role of intrinsic receptors in the selective autophagy of macromolecular complexes, enhancing our understanding of cellular quality control and aging-related diseases.
Molecular mimicry as a key parameter shaping T cell immunity
The MIMIC project aims to explore molecular mimicry's role in T cell recognition to enhance cancer immunotherapy by optimizing antigen selection based on pre-existing immunity insights.
Mechanisms of co-translational assembly of multi-protein complexes
This project aims to uncover the mechanisms of co-translational protein complex assembly using advanced techniques to enhance understanding of protein biogenesis and its implications for health and disease.
Learning the interaction rules of antibody-antigen binding
This project aims to enhance antibody-antigen binding prediction by generating large-scale sequence and structural data through high-throughput screening and machine learning techniques.