Unraveling the Supramolecular Architecture of Molecular Machineries in Adaptive Immunity

This project aims to uncover the complex mechanisms of peptide-MHC I biogenesis and T cell recognition to enhance understanding of adaptive immunity and its role in human disease.

Subsidie
€ 2.499.938
2025

Projectdetails

Introduction

To combat daily threats of pathogens and abnormal cells, the human organism features a sophisticated defense mechanism called the adaptive immune system. In broad terms, this intricate mechanism is triggered by specific peptide epitopes presented on molecules of the major histocompatibility complex class I (MHC I), which are scanned by cytotoxic T cells.

Mechanisms Involved

Intracellular transport, loading, and cell-surface recognition of antigenic peptides on MHC I are orchestrated by machineries, including:

  • The peptide-loading complex (PLC)
  • The T cell receptor (TCR) complex

The PLC is composed of multiple subunits, including the antigen translocation unit TAP, the MHC I heterodimer, and several chaperones ensuring that only stable peptide-MHC I molecules are released to the cell surface for decoding by TCR complexes.

Signaling and Hypothesis

Ligand binding and the supramolecular organization of TCR complexes are translated into phosphorylation of conserved tyrosine-containing cytosolic sequence motifs that initiate downstream signaling cascades. Based on their incredible efficiency and selectivity, we hypothesize that:

  1. The biogenesis of MHC I is highly processive and coupled via allosteric networking.
  2. Antigen processing and recognition machineries are compartmentalized by a defined supramolecular organization.

Challenges in Understanding

However, despite their fundamental importance, these architectural details of the PLC and the TCR, as well as the dynamic networking included in the quality control of the endoplasmic reticulum (ER) and receptor signaling processes, remain enigmatic due to their inherent dynamics, low abundance, and complexity.

Project Goals

This ambitious proposal will contribute to a long-awaited holistic understanding of the machineries that shape the vertebrate adaptive immunity. The expected findings from this project will be groundbreaking in understanding the hidden processes of epitope selection and reception in human disease.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 2.499.938
Totale projectbegroting€ 2.499.938

Tijdlijn

Startdatum1-1-2025
Einddatum31-12-2029
Subsidiejaar2025

Partners & Locaties

Projectpartners

  • JOHANN WOLFGANG GOETHE-UNIVERSITAET FRANKFURT AM MAINpenvoerder

Land(en)

Germany

Vergelijkbare projecten binnen European Research Council

ERC STG

MANUNKIND: Determinants and Dynamics of Collaborative Exploitation

This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.

€ 1.497.749
ERC STG

Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure

The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.

€ 1.498.280
ERC STG

Uncovering the mechanisms of action of an antiviral bacterium

This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.

€ 1.500.000
ERC STG

The Ethics of Loneliness and Sociability

This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.

€ 1.025.860

Vergelijkbare projecten uit andere regelingen

ERC STG

Intrinsic autophagy receptors: identity and cellular mechanisms.

This project aims to uncover the role of intrinsic receptors in the selective autophagy of macromolecular complexes, enhancing our understanding of cellular quality control and aging-related diseases.

€ 1.495.000
ERC COG

Molecular mimicry as a key parameter shaping T cell immunity

The MIMIC project aims to explore molecular mimicry's role in T cell recognition to enhance cancer immunotherapy by optimizing antigen selection based on pre-existing immunity insights.

€ 2.000.000
ERC SyG

Mechanisms of co-translational assembly of multi-protein complexes

This project aims to uncover the mechanisms of co-translational protein complex assembly using advanced techniques to enhance understanding of protein biogenesis and its implications for health and disease.

€ 9.458.525
ERC COG

Learning the interaction rules of antibody-antigen binding

This project aims to enhance antibody-antigen binding prediction by generating large-scale sequence and structural data through high-throughput screening and machine learning techniques.

€ 2.000.000