Heterogeneous Asymmetric Nanocluster-catalysis Design
The HAND project aims to develop atomically precise chiral nanoclusters for heterogeneous asymmetric catalysis to achieve enantioselectivity and enhance understanding of chirality at surfaces.
Projectdetails
Introduction
Chirality plays a major role in several areas due to the different behavior of each enantiomeric form of a compound, critical in the pharmaceutical industry. Obtaining pure enantiomers is one of the most difficult challenges, in which homogeneous asymmetric catalysis has achieved significant steps.
Heterogeneous Enantioselective Catalysis
Now it is time to undertake the challenge by heterogeneous enantioselective catalysis, implying great advantages in terms of sustainability. This approach offers further opportunities for in-depth understanding of mechanisms at the molecular level, relevant in multidisciplinary fields.
Design Requirements
However, successful design of such processes requires understanding and control of all relevant steps, which necessitates well-defined catalysts designed at the atomic level.
Atomically Precise Nanomaterials
A new class of atomically precise nanomaterials that offers ample opportunities to explore chirality at the fundamental level are the monolayer protected metal nanoclusters. These nanoclusters exhibit unexpected catalytic and intrinsically chiral properties.
Project Goals
The HAND project aims to tackle actual challenges in heterogeneous asymmetric catalysis and achieve enantioselectivity with chiral nanoclusters on surfaces designed at the atomic level.
Steps Involved
- After creating chiral clusters active in homogeneous asymmetric reactions, we will control their immobilization on the support surface and their chiral properties.
- Such atomically precise chiral surfaces will allow us to overcome sensitivity barriers of available chiral spectroscopic techniques, improving studies of chirality at surfaces.
- Finally, having a well-defined chiral surface, asymmetric/enantioselective model reactions will be explored, aiming to obtain pure enantiomers.
Significance of the Research
Each process step by itself represents a novel pioneering work in the field of nanoclusters and asymmetric catalysis, so far mostly unexplored. The fabrication and understanding of such a new class of chiral surfaces at the atomic level represent a breakthrough in knowledge relevant for materials science, nanotechnology, and medicine.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.993.224 |
Totale projectbegroting | € 1.993.224 |
Tijdlijn
Startdatum | 1-9-2024 |
Einddatum | 31-8-2029 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- TECHNISCHE UNIVERSITAET WIENpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Cargo-towing Highly enantioselective Electro-pumps: unconventional asymmetrIc Readout and transmission of chiral informationCHEIR aims to efficiently propagate chiral information using chiral conducting polymers for targeted drug delivery, enhancing applications in analytical, biological, and pharmaceutical fields. | ERC STG | € 1.492.004 | 2022 | Details |
Chiral separation of molecules enabled by enantioselective optical forces in integrated nanophotonic circuitsCHIRALFORCE aims to revolutionize enantiomer separation for drug discovery using silicon-based integrated waveguides and chiral optical forces for rapid, cost-effective processing. | EIC Pathfinder | € 3.263.726 | 2022 | Details |
Catalytic Light-induced DeracemizationThe CALIDE project aims to develop innovative photocatalytic methods for the efficient conversion of racemates into enantiomerically pure compounds using light, reducing waste in chiral synthesis. | ERC ADG | € 2.447.299 | 2025 | Details |
Enhancing the Potential of Enzymatic Catalysis with LightPHOTOZYME aims to integrate photocatalysis, biocatalysis, and organocatalysis to sustainably produce chiral molecules through innovative photoenzymes and radical reactions. | ERC ADG | € 2.945.000 | 2024 | Details |
Cargo-towing Highly enantioselective Electro-pumps: unconventional asymmetrIc Readout and transmission of chiral information
CHEIR aims to efficiently propagate chiral information using chiral conducting polymers for targeted drug delivery, enhancing applications in analytical, biological, and pharmaceutical fields.
Chiral separation of molecules enabled by enantioselective optical forces in integrated nanophotonic circuits
CHIRALFORCE aims to revolutionize enantiomer separation for drug discovery using silicon-based integrated waveguides and chiral optical forces for rapid, cost-effective processing.
Catalytic Light-induced Deracemization
The CALIDE project aims to develop innovative photocatalytic methods for the efficient conversion of racemates into enantiomerically pure compounds using light, reducing waste in chiral synthesis.
Enhancing the Potential of Enzymatic Catalysis with Light
PHOTOZYME aims to integrate photocatalysis, biocatalysis, and organocatalysis to sustainably produce chiral molecules through innovative photoenzymes and radical reactions.