Enhancing the Potential of Enzymatic Catalysis with Light
PHOTOZYME aims to integrate photocatalysis, biocatalysis, and organocatalysis to sustainably produce chiral molecules through innovative photoenzymes and radical reactions.
Projectdetails
Introduction
One pressing challenge of chemical research is to develop new processes that responsibly use natural resources to produce added-value chiral molecules. PHOTOZYME seeks to provide solutions by combining photocatalysis, biocatalysis, and organocatalysis. These three modern strategies offer powerful tools for the sustainable preparation of chiral molecules.
Problem Statement
To date, however, they have remained largely unconnected. This proposal aims to bridge these fields in order to address major problems in asymmetric synthesis for which there is no general solution with established methods.
Research Focus
Specifically, we will focus on native organocatalytic intermediates formed in the enzymes’ active sites, exploring their potential ability to reach an excited state upon visible light absorption and thus enable new-to-nature radical reactions.
Mechanism of Action
Here, light will be used to program entirely new mechanisms of catalysis within enzymes with an established ground-state reactivity, thus allowing them to catalyse completely different processes than those for which they evolved. The resulting photoenzymes will be powered by absorption of photons at each catalytic cycle and will serve to infer high enantioselectivity in important radical chemistries.
Application Areas
Our artificial photoenzymes will be applied in four “challenge areas,” each representing crucial yet unsolved synthetic problems:
- Develop methods to convert simple feedstock chemicals (e.g., fatty acids) into chiral building blocks.
- Control the formation of multiple stereocentres in intermolecular radical processes and at remote positions of linear substrates, objectives that are exceptionally difficult to achieve with existing small-molecule systems.
- Design biocatalytic radical cascades for the rapid synthesis of biorelevant chiral scaffolds directly from abundant substrates.
Conclusion
Overall, we aim to provide new photobiocatalytic tools that drive the sustainable production of chiral molecules.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.945.000 |
Totale projectbegroting | € 2.945.000 |
Tijdlijn
Startdatum | 1-11-2024 |
Einddatum | 31-10-2029 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- ALMA MATER STUDIORUM - UNIVERSITA DI BOLOGNApenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Synthetic Bimodal Photoredox Catalysis: Unlocking New Sustainable Light-Driven ReactivitySYNPHOCAT aims to develop novel bimodal organic photocatalysts for sustainable light-driven transformations of biorelevant molecules through rational design and mechanistic analysis. | ERC STG | € 1.920.260 | 2022 | Details |
Artificial Lanthanide Enzymes for Selective Photocatalysis: 'Enlightening' Metalloenzyme Design and EvolutionThis project aims to engineer a new class of sustainable photobiocatalysts by combining metal-dependent photocatalysis with enzyme engineering for selective C-H activation and C-C bond formation. | ERC STG | € 1.500.000 | 2022 | Details |
Photocatalytic Reactions Under Light and Dark with Transient Supramolecular AssembliesTENEBRIS aims to develop smart self-assembled materials for dark photocatalysis, enhancing solar energy conversion into fuels and addressing energy sustainability challenges. | ERC STG | € 1.494.500 | 2023 | Details |
Tailoring lattice oxygen and photo-induced polarons to control reaction mechanisms and boost catalytic activityPhotoDefect aims to enhance photoelectrochemical reactions by investigating defects and polarons in metal oxide photoelectrodes using advanced in situ techniques to improve efficiency and selectivity. | ERC STG | € 1.895.956 | 2023 | Details |
Synthetic Bimodal Photoredox Catalysis: Unlocking New Sustainable Light-Driven Reactivity
SYNPHOCAT aims to develop novel bimodal organic photocatalysts for sustainable light-driven transformations of biorelevant molecules through rational design and mechanistic analysis.
Artificial Lanthanide Enzymes for Selective Photocatalysis: 'Enlightening' Metalloenzyme Design and Evolution
This project aims to engineer a new class of sustainable photobiocatalysts by combining metal-dependent photocatalysis with enzyme engineering for selective C-H activation and C-C bond formation.
Photocatalytic Reactions Under Light and Dark with Transient Supramolecular Assemblies
TENEBRIS aims to develop smart self-assembled materials for dark photocatalysis, enhancing solar energy conversion into fuels and addressing energy sustainability challenges.
Tailoring lattice oxygen and photo-induced polarons to control reaction mechanisms and boost catalytic activity
PhotoDefect aims to enhance photoelectrochemical reactions by investigating defects and polarons in metal oxide photoelectrodes using advanced in situ techniques to improve efficiency and selectivity.