Exploiting plasmid–bacteria interactions to fight the evolution of antimicrobial resistance

PLAS-FIGHTER aims to develop innovative strategies against plasmid-mediated antimicrobial resistance by exploring plasmid-induced physiological effects in bacteria using advanced screening and ecological models.

Subsidie
€ 1.999.573
2024

Projectdetails

Introduction

The discovery of antibiotics revolutionised the fight against infectious diseases and paved the way for modern medicine. However, widespread use of antibiotics has driven rampant evolution of antimicrobial resistance (AMR) in bacteria.

Mechanism of AMR Acquisition

The main route for AMR acquisition in clinically important bacteria is the horizontal transfer of plasmids (conjugation-competent mobile genetic elements) carrying resistance genes. AMR plasmids allow bacteria to survive antibiotics, but they also entail physiological alterations in the host cell.

Recent Findings

Recent results from my group and others reveal that AMR plasmids:

  1. Produce a shared set of physiological alterations in the bacterial host.
  2. Induce changes in host antibiotic susceptibility profiles.

Project Goals

The goal of PLAS-FIGHTER is to exploit plasmid-induced physiological effects in bacteria to develop new ecology- and evolution-informed strategies against plasmid-mediated AMR.

Objectives

  1. Genome-wide CRISPRi Screening: We will use genome-wide CRISPRi screening technology to dissect the molecular basis and functional consequences of plasmid-induced physiological effects in clinical bacteria at an unprecedented level of resolution, revealing new specific targets in AMR plasmid-carrying cells.

  2. High-throughput Susceptibility Assays: We will perform high-throughput susceptibility assays, using inhibitors of the targets revealed in the first objective and a wide range of antibiotics in a collection of paired isogenic plasmid-carrying and plasmid-free bacterial strains of the highest clinical relevance.

Experimental Design

Crucially, we will perform experiments and test candidate treatments in a gradient of increasing ecological complexity, in terms both of community composition (from monocultures to human gut communities) and habitat structure (from in vitro lab cultures to the mouse gut).

Conclusion

In PLAS-FIGHTER, I will build on my established expertise and pioneering results to develop a novel, multidisciplinary, ground-breaking project that will open up new research avenues towards ecology- and evolution-informed anti-AMR strategies.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 1.999.573
Totale projectbegroting€ 1.999.573

Tijdlijn

Startdatum1-2-2024
Einddatum31-1-2029
Subsidiejaar2024

Partners & Locaties

Projectpartners

  • AGENCIA ESTATAL CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICASpenvoerder

Land(en)

Spain

Vergelijkbare projecten binnen European Research Council

ERC STG

MANUNKIND: Determinants and Dynamics of Collaborative Exploitation

This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.

€ 1.497.749
ERC STG

Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure

The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.

€ 1.498.280
ERC STG

Uncovering the mechanisms of action of an antiviral bacterium

This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.

€ 1.500.000
ERC STG

The Ethics of Loneliness and Sociability

This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.

€ 1.025.860

Vergelijkbare projecten uit andere regelingen

ERC ADG

Bacteriocins from interbacterial warfare as antibiotic alternative

BACtheWINNER aims to develop novel antimicrobials from bacteriocins through advanced bioengineering and molecular genetics to combat antimicrobial resistance and improve human and animal health.

€ 2.500.000
ERC ADG

Breaking resistance of pathogenic bacteria by chemical dysregulation

The project aims to combat antibiotic-resistant bacteria by developing innovative small molecules that dysregulate bacterial physiology through a three-tiered chemical strategy.

€ 2.499.785
EIC Pathfinder

Pharmaco-modulation of epithelia for induction of antimicrobial peptide expression: a disruptive approach to fight antibiotic resistance

MaxImmun aims to develop innovative molecules that enhance antimicrobial peptides to combat infections and antibiotic resistance, progressing towards clinical trials.

€ 3.194.450
ERC ADG

Antibiotics of the future: are they prone to bacterial resistance?

This project aims to develop a forecasting framework for the long-term effectiveness of new antibiotics by studying bacterial resistance evolution and its implications for future antibiotic design and use.

€ 3.479.716