Elasticity, capillarity and imbibition in textiles
The ElCapiTex project aims to characterize and model the behavior of wet non-woven textiles to develop sustainable alternatives to plastics through innovative processes and tailored properties.
Projectdetails
Introduction
Fibrous media are ubiquitous in natural and engineered systems, due to their versatility, flexibility, and functionality. Nonwovens (i.e. entangled fibrous networks), and especially natural fibre-based materials such as paper or flax mats, are heavily used for a variety of applications and could be largely developed as a sustainable alternative for plastics.
Limitations
The first limitation of their widespread use is their response to humidity, wetting, or drying, which is unavoidable in many applications and is a key step of their manufacturing processes.
Project Objectives
The ElCapiTex project aims at characterizing and modelling the specific behaviour and properties of wet non-woven textiles, including:
- Consolidation
- Imbibition
- Mechanical response
- Deformation
Methodology
In order to characterize the complex interplay between the various physical mechanisms that give rise to the global properties of textiles, we will focus on:
- Hydrodynamics
- Capillarity
- Elasticity
- Swelling
We will combine different approaches coming from three recent active research areas of fluid-structure interactions:
- The transport of suspensions of elastic objects
- Elastocapillarity (i.e. the deformation induced by the capillary forces associated with liquid-air interfaces)
- Poroelasticity
Experimental Approach
We will work with a hierarchy of experimental model systems of increasing complexity, particularly by fabricating model nonwoven sheets from gel fibre suspensions.
Theoretical Models
We will further build theoretical models based on recent statistical approaches used to describe the mechanical properties of dry textiles.
Conclusion
Understanding these physical mechanisms is mandatory to develop innovative processes and materials. Reconciling fundamental pore-scale mechanisms with network behaviour will allow for the design of tailored fibrous media with specific properties.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.999.474 |
Totale projectbegroting | € 1.999.474 |
Tijdlijn
Startdatum | 1-9-2023 |
Einddatum | 31-8-2028 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- ECOLE POLYTECHNIQUEpenvoerder
- CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Electrical Modulation of Elastic ModuliThis project aims to develop stimuli-responsive textiles using conjugated polymers to enable tactile communication through adjustable pliability and texture for applications in robotics and virtual reality. | ERC Consolid... | € 2.000.000 | 2022 | Details |
Interaction of Elasto-inertial Turbulence and material microstructure – INTER-ETThe INTER-ET project aims to advance the understanding of elastic turbulence in complex fluids through innovative simulations and experiments, enhancing mixing and heat transfer for various applications. | ERC Consolid... | € 2.000.000 | 2025 | Details |
From fiber to wall: PHYSical approach of hygrothermal transfers in BIO-based construction MATerialsThis project aims to develop a detailed understanding and modeling of hygrothermal processes in bio-based construction materials using innovative MRI techniques and open-source software for performance prediction. | ERC Advanced... | € 2.500.000 | 2023 | Details |
Studying Threads Intricately Complex HydrodynamicsThe project aims to explore fluid dynamics in knitting-like patterns to create resilient solid materials, enabling innovative aerial printing methods for diverse applications. | ERC Consolid... | € 2.380.750 | 2025 | Details |
Biological fabrication of cotton fibers with tailored propertiesThis project aims to revolutionize cotton fiber production by exploring sugar uptake in plants to create bio-based materials with tailored properties, promoting sustainability over chemical processes. | ERC Consolid... | € 2.000.000 | 2022 | Details |
Electrical Modulation of Elastic Moduli
This project aims to develop stimuli-responsive textiles using conjugated polymers to enable tactile communication through adjustable pliability and texture for applications in robotics and virtual reality.
Interaction of Elasto-inertial Turbulence and material microstructure – INTER-ET
The INTER-ET project aims to advance the understanding of elastic turbulence in complex fluids through innovative simulations and experiments, enhancing mixing and heat transfer for various applications.
From fiber to wall: PHYSical approach of hygrothermal transfers in BIO-based construction MATerials
This project aims to develop a detailed understanding and modeling of hygrothermal processes in bio-based construction materials using innovative MRI techniques and open-source software for performance prediction.
Studying Threads Intricately Complex Hydrodynamics
The project aims to explore fluid dynamics in knitting-like patterns to create resilient solid materials, enabling innovative aerial printing methods for diverse applications.
Biological fabrication of cotton fibers with tailored properties
This project aims to revolutionize cotton fiber production by exploring sugar uptake in plants to create bio-based materials with tailored properties, promoting sustainability over chemical processes.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Sustainable Textile ElectronicsThe project aims to develop sustainable e-textile circuit technologies using eco-friendly materials and innovative production methods to minimize environmental impact and enable circular economy practices. | EIC Pathfinder | € 2.862.042 | 2024 | Details |
Haalbaarheidsstudie naar natuurlijke materialen ter vervanging van elastaan/spandex, ten einde om leggings/tights te ontwikkelen om de sportkledingindustrie verder te verduurzamen.Het project onderzoekt de ontwikkeling van natuurlijke vervangers voor elastaan/spandex in sportkleding om microplasticvervuiling te verminderen en duurzaamheid te bevorderen. | Mkb-innovati... | € 20.000 | 2022 | Details |
CleanTex: Een circulair en waterloos proces voor textiel verven op basis van Superkritische CO2Het project ontwikkelt innovatieve machines die textiel verwerken met superkritisch kooldioxide in plaats van water, om de ecologische impact van de textielindustrie te verminderen. | Mkb-innovati... | € 141.295 | 2021 | Details |
Technology for 3D fibrous eco materialsDeveloping innovative 3D eco fibrous materials from cellulose to replace fossil-based products, targeting markets like biodegradable growing media and sustainable packaging. | EIC Accelerator | € 2.500.000 | 2022 | Details |
Ontwikkeling van duurzame gezonde texturisersHet project 'Next' ontwikkelt een milde extractietechnologie voor het verbeteren van natuurlijke vezels, gericht op het creëren van nieuwe vezeltypes en het bevorderen van duurzaamheid en gezondheid. | Mkb-innovati... | € 110.250 | 2015 | Details |
Sustainable Textile Electronics
The project aims to develop sustainable e-textile circuit technologies using eco-friendly materials and innovative production methods to minimize environmental impact and enable circular economy practices.
Haalbaarheidsstudie naar natuurlijke materialen ter vervanging van elastaan/spandex, ten einde om leggings/tights te ontwikkelen om de sportkledingindustrie verder te verduurzamen.
Het project onderzoekt de ontwikkeling van natuurlijke vervangers voor elastaan/spandex in sportkleding om microplasticvervuiling te verminderen en duurzaamheid te bevorderen.
CleanTex: Een circulair en waterloos proces voor textiel verven op basis van Superkritische CO2
Het project ontwikkelt innovatieve machines die textiel verwerken met superkritisch kooldioxide in plaats van water, om de ecologische impact van de textielindustrie te verminderen.
Technology for 3D fibrous eco materials
Developing innovative 3D eco fibrous materials from cellulose to replace fossil-based products, targeting markets like biodegradable growing media and sustainable packaging.
Ontwikkeling van duurzame gezonde texturisers
Het project 'Next' ontwikkelt een milde extractietechnologie voor het verbeteren van natuurlijke vezels, gericht op het creëren van nieuwe vezeltypes en het bevorderen van duurzaamheid en gezondheid.