Efficient and functional optical frequency conversion in 3D Nonlinear Optical Artificial Materials
Developing 3D nano-engineered nonlinear optical materials to enhance frequency conversion efficiency and overcome limitations of bulk nonlinear crystals for advanced optical technologies.
Projectdetails
Introduction
Optical frequency conversion in bulk nonlinear crystals is used for the generation of coherent light over the entire optical regime from extreme ultra-violet up to THz waves. This remarkable ability is at the core of a plethora of important technological and scientific applications.
Limitations of Bulk Nonlinear Crystals
However, bulk nonlinear crystals pose strong limitations on integration, miniaturization, and control over the nonlinear interactions, holding back the further progress of optical frequency conversion technologies.
Proposed Breakthrough
I propose to lead a great breakthrough in the field by developing a new kind of 3D nano-engineered nonlinear optical artificial materials with superior nonlinear optical properties, free of the limitations of bulk nonlinear crystals.
Inspiration from Nonlinear Metasurfaces
These materials will be inspired by recently developed nonlinear metasurfaces. It has been demonstrated that nonlinear metasurfaces exhibit unprecedented nonlinear functionalities and effective nonlinearities exceeding by far those of bulk nonlinear crystals, promising to replace bulk crystals in future nonlinear optical technologies.
Challenges with Current Designs
However, their two-dimensional designs and nanoscale thickness strongly limit their frequency conversion efficiency, with no existing practical nanofabrication approach nor theoretical proposition to overcome this limitation. Our research aims to close this gap.
Research Objectives
- Develop a new nanofabrication methodology that will allow stacking hundreds of nonlinear metasurfaces into a 3D nonlinear material in a technologically viable way.
- Study new fundamental nonlinear interactions in these novel nonlinear materials.
- Demonstrate experimentally their superiority over bulk nonlinear crystals in conversion efficiency and functionalities.
Potential Impact
These achievements will potentially pave the way to the next era of nonlinear optical frequency conversion technologies. They will also immediately impact applications of 3D nanostructured optical materials in general, as well as may change the way we think about 3D nanofabrication.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 3.000.000 |
Totale projectbegroting | € 3.000.000 |
Tijdlijn
Startdatum | 1-1-2023 |
Einddatum | 31-12-2027 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- TEL AVIV UNIVERSITYpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Band-resolved imaging and nonlinear optical control of currents in topological materialsThis project aims to develop nonlinear coherent control of photocurrents in topological materials using time-resolved ARPES to enhance understanding and application of their unique optical properties. | ERC STG | € 2.316.250 | 2023 | Details |
Atomically layered materials for next-generation metasurfacesMETANEXT aims to enhance light-matter interactions in 2D materials by developing hBN-based metasurfaces for efficient optical access, enabling advances in quantum light sources and electronic properties. | ERC STG | € 1.498.056 | 2023 | Details |
Excitonic 2D Metasurfaces for Active Multifunctional Flat OpticsThis project aims to develop tunable optical elements using monolayer 2D quantum materials to create multifunctional metasurfaces for advanced applications in optics and imaging. | ERC STG | € 1.499.985 | 2024 | Details |
Interactive phononic matter: reshaping crystal landscapes for ultrafast switchingINTERPHON aims to revolutionize material manipulation by using ultrafast light interactions with crystal lattices, enabling energy-efficient phase transitions and new technological advancements. | ERC ADG | € 3.250.000 | 2025 | Details |
Band-resolved imaging and nonlinear optical control of currents in topological materials
This project aims to develop nonlinear coherent control of photocurrents in topological materials using time-resolved ARPES to enhance understanding and application of their unique optical properties.
Atomically layered materials for next-generation metasurfaces
METANEXT aims to enhance light-matter interactions in 2D materials by developing hBN-based metasurfaces for efficient optical access, enabling advances in quantum light sources and electronic properties.
Excitonic 2D Metasurfaces for Active Multifunctional Flat Optics
This project aims to develop tunable optical elements using monolayer 2D quantum materials to create multifunctional metasurfaces for advanced applications in optics and imaging.
Interactive phononic matter: reshaping crystal landscapes for ultrafast switching
INTERPHON aims to revolutionize material manipulation by using ultrafast light interactions with crystal lattices, enabling energy-efficient phase transitions and new technological advancements.