Early Build-up of Ringed Planet-Forming Disks

EARLYBIRD aims to enhance understanding of planet formation by modeling disk dynamics and material composition, revealing observable effects on planetesimals and planets through innovative 3D techniques.

Subsidie
€ 1.999.250
2024

Projectdetails

Introduction

With one planet per star on average, planet formation must be a robust process. Yet, surprisingly, we still do not fully understand how planet formation works. Current models for planet formation usually assume pre-existing smooth disks and homogeneously distributed planetesimals of arbitrary composition. In contrast, recent results highlight the crucial role of early stage disk sub-structure, inhomogeneous accretion, and carbon depletion processes on the final planetary systems. Until now, adequate techniques to model these dynamic, complex systems in a computationally cost-efficient way were lacking.

Project Aim

The overall aim of EARLYBIRD is therefore to overcome this bottleneck and track the planet-building material and its composition through the initial formation of disks into the populations of planetesimals and planets. It will also reveal in which ways these processes are observable in older disks and exoplanets.

Specific Objectives

The project concretely will:

  1. Determine the global effects of streamers/sustained infall on early evolution of disks and planet formation.
  2. Study how outbursts and dust evolution interact and determine the effect of high dust-to-gas ratio infall on planetesimal formation.
  3. Track compositional changes (e.g. carbon, CO, water) during planet formation.
  4. Decipher the observable properties all these scenarios imprint in the distribution and composition of small dust, planetesimals, and planets.

Methodology

Based on my pioneering work on disk particle growth and transport, EARLYBIRD will utilize highly innovative 3D modeling techniques, which are unique in being calibrated against full coagulation models and still are two magnitudes faster than a full solver.

Impact

The project will thereby not only enable me to fully exploit the information imprinted by the disk formation stages on planet formation, but also pave the way for cost-efficient 3D modeling of dynamic systems in neighboring fields.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 1.999.250
Totale projectbegroting€ 1.999.250

Tijdlijn

Startdatum1-3-2024
Einddatum28-2-2029
Subsidiejaar2024

Partners & Locaties

Projectpartners

  • LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHENpenvoerder

Land(en)

Germany

Vergelijkbare projecten binnen European Research Council

ERC STG

MANUNKIND: Determinants and Dynamics of Collaborative Exploitation

This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.

€ 1.497.749
ERC STG

Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure

The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.

€ 1.498.280
ERC STG

Uncovering the mechanisms of action of an antiviral bacterium

This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.

€ 1.500.000
ERC STG

The Ethics of Loneliness and Sociability

This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.

€ 1.025.860

Vergelijkbare projecten uit andere regelingen

ERC STG

Formation of planetary building blocks throughout time and space

The PLANETOIDS project aims to develop advanced numerical models to simulate early planet formation stages, enhancing our understanding of planetesimal formation and the origins of exoplanets.

€ 1.447.091
ERC STG

Rebuilding the foundations of planet formation: proto-planetary disc evolution

The project aims to develop a new model of proto-planetary disc evolution driven by winds, enhancing our understanding of planet formation by integrating observational data with theoretical frameworks.

€ 1.495.755
ERC STG

EXOplanet Diversity and the Origin of the Solar System

EXODOSS aims to enhance our understanding of terrestrial planet formation by modeling the growth process from primordial pebbles to fully-grown planetary systems using advanced simulations.

€ 1.498.943
ERC ADG

From Dust to Planets: A Novel Approach to Constrain Dust Growth and the Planet Forming Zone in Disks

The project aims to provide direct observational constraints on the midplane pebble layer in protoplanetary disks to enhance understanding of dust growth and early planet assembly mechanisms.

€ 2.487.721