From Dust to Planets: A Novel Approach to Constrain Dust Growth and the Planet Forming Zone in Disks
The project aims to provide direct observational constraints on the midplane pebble layer in protoplanetary disks to enhance understanding of dust growth and early planet assembly mechanisms.
Projectdetails
Introduction
Exoplanets are frequent around Solar-like stars, as shown by large surveys. They are formed by the growth of dust and accumulation of gas contained in protoplanetary disks surrounding young stars.
Core-Accretion Scenario
To form planets, the classic Core-Accretion scenario is the main framework today, but it appears to be too slow given the short lifetimes of disks. Theoretical additions to Core-Accretion exist to speed it up. They all hypothesize that disks contain a massive, dense, and flat layer of pebbles in the midplane.
Objective 1: Observational Constraints
The validation of these scenarios will be impossible as long as the disk properties remain uncertain. The first objective of this project is to provide the first direct observational constraints (mass, vertical extent, radius) for this midplane pebble layer.
Methodology
Specifically, an original imaging programme for Edge-On disks will be combined with dedicated hydrodynamical models of vertical dust settling, taking into account dust evolution and dust-gas dynamics. This is very demanding.
Objective 2: Dust Shape and Growth Mechanisms
The second objective is to identify the shape of dust in young disks and pin down their growth mechanisms. This major advance is also crucial because the structure of dust governs the dust-gas dynamics (via collision and drag cross-sections) as well as the scattering properties needed to compare data and models.
Approach
To meet this goal, we will extract the scattering properties (phase function, polarization) from high-resolution images and use a unique micro-wave analogy experiment. Complex analog particles will be fabricated, measured, and compared with data to ultimately reveal the structure of dust in disks.
Final Objective: Understanding Dust Growth and Planet Assembly
All these results, combined in the final objective, will lead to a major leap towards a deep understanding of dust growth and early planet assembly in protoplanetary disks.
Potential Impact
Dust2Planets has the potential to overcome two long-standing obstacles in early planetesimal assembly:
- How dust overcomes the radial-drift barrier
- How dust overcomes the fragmentation barrier to form planetesimals.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.487.721 |
Totale projectbegroting | € 2.487.721 |
Tijdlijn
Startdatum | 1-9-2022 |
Einddatum | 31-8-2027 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRSpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Formation of planetary building blocks throughout time and spaceThe PLANETOIDS project aims to develop advanced numerical models to simulate early planet formation stages, enhancing our understanding of planetesimal formation and the origins of exoplanets. | ERC STG | € 1.447.091 | 2022 | Details |
Rebuilding the foundations of planet formation: proto-planetary disc evolutionThe project aims to develop a new model of proto-planetary disc evolution driven by winds, enhancing our understanding of planet formation by integrating observational data with theoretical frameworks. | ERC STG | € 1.495.755 | 2022 | Details |
EXOplanet Diversity and the Origin of the Solar SystemEXODOSS aims to enhance our understanding of terrestrial planet formation by modeling the growth process from primordial pebbles to fully-grown planetary systems using advanced simulations. | ERC STG | € 1.498.943 | 2022 | Details |
Early phases of planetary birth sites -- environmental context and interstellar inheritanceThis project aims to create realistic simulations of protoplanetary accretion discs within their interstellar context to understand planet formation and its influencing factors. | ERC COG | € 2.437.493 | 2022 | Details |
Formation of planetary building blocks throughout time and space
The PLANETOIDS project aims to develop advanced numerical models to simulate early planet formation stages, enhancing our understanding of planetesimal formation and the origins of exoplanets.
Rebuilding the foundations of planet formation: proto-planetary disc evolution
The project aims to develop a new model of proto-planetary disc evolution driven by winds, enhancing our understanding of planet formation by integrating observational data with theoretical frameworks.
EXOplanet Diversity and the Origin of the Solar System
EXODOSS aims to enhance our understanding of terrestrial planet formation by modeling the growth process from primordial pebbles to fully-grown planetary systems using advanced simulations.
Early phases of planetary birth sites -- environmental context and interstellar inheritance
This project aims to create realistic simulations of protoplanetary accretion discs within their interstellar context to understand planet formation and its influencing factors.