dAta-dRiven integrated approaches to CHemIcal safety assessMEnt and Drug dEvelopment
The ARCHIMEDES project aims to revolutionize chemical and drug development by integrating toxicogenomics, AI, and a Knowledge Graph to enhance safety and innovation in a regulatory-compliant manner.
Projectdetails
Introduction
Traditional in vivo tests are hampering the development of new, safe, and effective chemicals and drugs. If on one hand we need to ensure that dangerous chemicals do not emerge, on the other, we also need to promote rapid and sustainable innovation to successfully overcome the modern challenges of humankind.
Toxicogenomics and AOP
Toxicogenomics aims at clarifying the mechanism of action (MOA) of chemicals by using omics assays. The Adverse Outcome Pathways (AOP) concept is also emerging to contextualize toxicogenomics-derived MOA. Efforts are ongoing to anchor AOPs to molecular assays, but systematic embedding of AOP-derived in vitro tests and Integrated Approaches to Testing and Assessment (IATA) are still unestablished.
Regulatory Acceptance
At the same time, toxicogenomics-based evidence still struggles to gain regulatory acceptance.
Integrated Strategy
I aim to implement an integrated strategy based on state-of-the-art big data science, artificial intelligence (AI), toxicogenomics, molecular assays, and cell technology via a novel Knowledge Graph approach.
Development of the TKG
I will do so by developing the Toxicology Knowledge Graph (TKG), an innovative data platform where the currently fragmented knowledge in the field is going to be curated and integrated. The TKG will serve as a learning platform for artificial intelligence (AI) algorithms, which will be used to:
- Find new characteristics of chemicals/drugs;
- Infer associations between exposures and diseases;
- Select the most relevant cell lines to study specific phenotypes/chemical classes;
- Find the best genes to be used as reporters for specific AOPs;
- Define the applicability domain of computational, experimental, and IATA models.
High-Throughput Molecular Assays
I will also establish and validate regulatory-relevant high-throughput molecular assays to investigate the point of departure (PoD) of exposures.
Project Impact
The ARCHIMEDES project will shift the paradigm of chemical and drug development, facilitating the emergence of new, smarter, greener, and more sustainable chemicals, drugs, and materials.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.000.000 |
Totale projectbegroting | € 2.000.000 |
Tijdlijn
Startdatum | 1-9-2022 |
Einddatum | 31-8-2027 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- TAMPEREEN KORKEAKOULUSAATIO SRpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Single-Cell Metabolomics for Drug Discovery and DevelopmentThe project aims to commercialize single-cell metabolomics technology to enhance drug safety by revealing off-target effects and metabolic responses in drug candidates. | ERC POC | € 150.000 | 2022 | Details |
QUANTUM-TOX - Revolutionizing Computational Toxicology with Electronic Structure Descriptors and Artificial IntelligenceThis project aims to revolutionize computational toxicology by developing interpretable quantum mechanics-based descriptors (ESigns) for accurate toxicity predictions across the entire chemical space. | EIC Pathfinder | € 1.994.770 | 2024 | Details |
Understanding the impact of environmental POLlution on the adaptive Immune SystemThis project aims to utilize advanced omics technologies to investigate the low-concentration bioactivity of PFAS chemicals and their potential role in non-communicable diseases. | ERC STG | € 1.499.749 | 2025 | Details |
New methodologies for automated modeling of the dynamic behavior of large biological networksAUTOMATHIC aims to develop an automated framework for ODE modeling of cell transport and signaling to enhance drug safety and optimize therapies for chronic kidney disease patients. | ERC STG | € 1.500.000 | 2024 | Details |
Single-Cell Metabolomics for Drug Discovery and Development
The project aims to commercialize single-cell metabolomics technology to enhance drug safety by revealing off-target effects and metabolic responses in drug candidates.
QUANTUM-TOX - Revolutionizing Computational Toxicology with Electronic Structure Descriptors and Artificial Intelligence
This project aims to revolutionize computational toxicology by developing interpretable quantum mechanics-based descriptors (ESigns) for accurate toxicity predictions across the entire chemical space.
Understanding the impact of environmental POLlution on the adaptive Immune System
This project aims to utilize advanced omics technologies to investigate the low-concentration bioactivity of PFAS chemicals and their potential role in non-communicable diseases.
New methodologies for automated modeling of the dynamic behavior of large biological networks
AUTOMATHIC aims to develop an automated framework for ODE modeling of cell transport and signaling to enhance drug safety and optimize therapies for chronic kidney disease patients.