Continuous Enzyme Evolution – solving bottlenecks in enzyme engineering to design next-generation biocatalysts
The ContiZymes project aims to develop a scalable continuous evolution platform for rapidly engineering valuable biocatalysts, enhancing enzyme efficiency and mapping their functional properties.
Projectdetails
Introduction
Directed evolution has revolutionized the application of enzymes in industrial settings by allowing users to tailor the properties and activities of biocatalysts to their needs. But classic directed evolution is notoriously labor- and time-intensive, as it manually stages mutation, selection, and amplification cycles.
Continuous Evolution Approaches
In contrast, continuous evolution (CE) approaches aim to achieve these steps within a replicating organism, making it possible to engineer efficient enzymes in a matter of days rather than months or years. Unfortunately, current CE approaches are typically applicable only to model enzymes with little industrial value.
Development of a Scalable CE Platform
To unleash the full potential of CE, we will develop a scalable, low-tech CE platform, which is readily applicable to biocatalysts that provide value-added products.
Merging Strategies
Toward this end, we will:
- Merge a versatile selection system we recently developed.
- Implement strategies to diversify the genes of targeted enzymes in vivo.
- Create an autonomous setup to grow bacterial populations continuously.
Combined, the resulting CE platform will enable us to engineer biocatalysts along many and long evolutionary trajectories.
Analysis and Machine Learning Integration
Moreover, analyzing the fate of these populations by sequencing will allow us to map the sequence-structure-function relationships of these biocatalysts. Based on the systematic datasets generated in these efforts, we will train machine-learning (ML) models to predict functional sequences.
ML-Directed CE Approach
Lastly, in a ML-directed CE approach, we will establish a design-build-test-learn cycle to improve models and guide CEs toward promising, but otherwise inaccessible sequence spaces.
Conclusion
Overall, ContiZymes will overcome unaddressed challenges associated with the application of biocatalysts that promote sought-after C-C, C-halogen, and C-N-bond forming reactions. We will not only engineer these enzymes at an unprecedented rate and scale, but also map their fitness landscapes and take a critical step toward the on-demand design of next-generation biocatalysts.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.999.991 |
Totale projectbegroting | € 1.999.991 |
Tijdlijn
Startdatum | 1-5-2024 |
Einddatum | 30-4-2029 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- RIJKSUNIVERSITEIT GRONINGENpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Commercial feasibility of a cell-free reactor setup for optimisation of complex enzymatic pathwaysThis project aims to commercialize a continuous stirred tank reactor for optimizing complex enzymatic pathways, enhancing production efficiency and establishing a viable commercialization strategy. | ERC POC | € 150.000 | 2022 | Details |
When enzymes join forces: unmasking a mitochondrial biosynthetic engineThis project aims to reconstitute and characterize a biosynthetic pathway for coenzyme Q within a metabolon, revealing enzyme interactions and evolutionary transitions in crowded cellular environments. | ERC ADG | € 2.107.750 | 2023 | Details |
Computational design of industrial enzymes for green chemistryGREENZYME aims to revolutionize enzyme design using deep learning and computational methods to create efficient, eco-friendly catalysts, reducing drug production costs and promoting green chemistry. | ERC POC | € 150.000 | 2023 | Details |
Development of rationally designed enzyme kitsKITZYME aims to create patentable enzyme kits for stereoselective carbon-carbon bond formation using advanced computational methods to enhance catalytic efficiency sustainably and cost-effectively. | ERC POC | € 150.000 | 2024 | Details |
Commercial feasibility of a cell-free reactor setup for optimisation of complex enzymatic pathways
This project aims to commercialize a continuous stirred tank reactor for optimizing complex enzymatic pathways, enhancing production efficiency and establishing a viable commercialization strategy.
When enzymes join forces: unmasking a mitochondrial biosynthetic engine
This project aims to reconstitute and characterize a biosynthetic pathway for coenzyme Q within a metabolon, revealing enzyme interactions and evolutionary transitions in crowded cellular environments.
Computational design of industrial enzymes for green chemistry
GREENZYME aims to revolutionize enzyme design using deep learning and computational methods to create efficient, eco-friendly catalysts, reducing drug production costs and promoting green chemistry.
Development of rationally designed enzyme kits
KITZYME aims to create patentable enzyme kits for stereoselective carbon-carbon bond formation using advanced computational methods to enhance catalytic efficiency sustainably and cost-effectively.